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Abstract.  This paper conducts experiments with three skewed data sets, seeking 
to demonstrate problems when skewed data is used, and identifying counter 
problems when data is balanced.  The basic data mining algorithms of decision 
tree, regression-based, and neural network models are considered, using both 
categorical and continuous data.  Two of the data sets have binary outcomes, 
while the third has a set of four possible outcomes.  Key findings are that when 
the data is highly unbalanced, algorithms tend to degenerate by assigning all 
cases to the most common out come.  When data is balanced, accuracy rates tend 
to decline.  If data is balanced, that reduces the training set size, and can lead to 
the degeneracy of model failure through omission of cases encountered in the 
test set.  Decision tree algorithms were found to be the most robust with respect 
to the degree of balancing applied. 

 
 

1 Introduction 
 

Data mining technology is used increasingly by many companies to analyze large 
databases in order to discover previously unknown and actionable information that is t hen 
used to make crucial business decisions.  This is the basis for the term “knowledge 
discovery”.  Data mining can be performed through a number of techniques, such as 
association, classification, clustering, prediction, and sequential patterns.   Data mining 
algorithms are implemented from various fields such as statistics, decision trees, neural 
networks, fuzzy logic and linear programming.  There are many data mining software 
product suites, to include Enterprise Miner (SAS), Intelligent Miner (IBM), Clementine 
(SPSS), and Polyanalyst (Megaputer).  There are also specialty software products for 
specific algorithms, such as CART and See5 for decision trees, and other products for 
various phases of the data mining process. 
 Data mining has proven valuable in almost every academic discipline.  Understanding 
business application of data mining is necessary to expose business college students to 
current analytic information technology.  Data mining has been instrumental in customer 
relationship  management [1] [2], financial analysis [3], credit card management [4], 
banking [5], insurance [6], tourism [7], and many other areas of statistical support to 
business.  Business data mining is made possible by the generation of masses of data 
from computer information systems.  Understanding this information generation system 
and tools available leading to analysis is fundamental for business students in the 21st 
Century.  There are many highly useful applications in practically every field of scientific 
study.  Data mining support is required to make sense of the masses of business data 
generated by computer technology. 
 A major problem in many of these applications is that data is often skewed.  For 
instance, insurance companies hope that only a small portion of claims are fraudulent.  
Physicians hope that only a small portion of tested patients have cancerous tumors.  
Banks hope that only a small portion of their loans will turn out to have repayment 
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problems.  This paper examines the relative impact of such skewed data sets on common 
data mining algorithms for two different types of data – categorical and continuous. 
 
 
2 Data Sets 
 
The paper presents results of experiments on outcome balancing using three simulated 
data sets representative of common applications of data mining in business.  While 
simulated, these data sets were designed to have realistic correlations across variables.  
The first model includes loan applicants, the second data set insurance claims, and the 
third records of job performance.   
 
2.1 Loan Application Data 
 
This data set consists of information on applicants for appliance loans.  The full data set 
involves 650 past observations, of which 400 were used for the full training set, and 250 
for testing.  Applicant information on age, income, assets, debts, and credit rating (from a 
credit bureau, with red for bad credit, yellow for some credit problems, and green for 
clean credit record) is assumed available from loan applications.  Variable Want is the 
amount requested in the appliance loan application. For past observations, variable On-
Time is 1 if all payments were received on time, and 0 if not (Late or Default).  The 
majority of past loans were paid on time.   
 Data was transformed to obtain categorical data for some of the techniques.  Age was 
grouped by less than 30 (young), 60 and over (old), and in between (middle aged).  
Income was grouped as less than or equal to $30,000 per year and lower (low income), 
$80,000 per year or more (high income), and average in between.  Asset, debt, and loan 
amount (variable Want) are used by rule to generate categorical variable risk.  Risk was 
categorized as high if debts exceeded assets, as low if assets exceeded the sum of debts 
plus the borrowing amount requested, and average in between.  The categorical data thus 
consisted of four variables, each with three levels. The continuous data set transformed 
the original data to a 0-1 scale with 1 representing ideal and 0 the nadir for each variable. 
 
2.2  Insurance Fraud Data 
 
The second data set involves insurance claims.  The full data set includes 5000 past 
claims with known outcomes, of which 4000 were available for training and 1000 
reserved for testing.  Variables include claimant age, gender, amount of insurance claim, 
number of traffic tickets currently on record (less than 3 years old), number of prior 
accident claims of the type insured, and Attorney (if any).  Outcome variable Fraud was 0 
if fraud was not detected, and 1 if fraud was detected. 
 The categorical data set was generated by grouping Claimant Age into three levels 
and Claim amount into three levels.  Gender was binary, while number of tickets and 
prior claims were both integer (from 0 to 3).  The Attorney variable was left as five 
discrete values.  Outcome was binary.  The continuous data set transformed the original 
data to a 0-1 scale with 1 representing ideal and 0 the nadir for each variable. 
 
2.3  Job Application Data 
 
The third data set involves 500 past job applicants, of which 250 were used for the full 
training set and 250 reserved for testing.  This data set varies from the first two in that 
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there are four possible outcomes (unacceptable, minimal, adequate, and excellent, in 
order of attractiveness).   
 Some of these variables were quantitative and others are nominal.  State, degree, and 
major were nominal.  There is no information content intended by state or major.  State 
was not expected to have a specific order prior to analysis, nor was major.  (The analysis 
may conclude that there is a relationship between state, major, and outcome, however.)  
Degree was ordinal, in that MS and MBA are higher degrees than BS.  However, as with 
state and major, the analysis may find a reverse relationship with outcome.   
 The categorical data set was created by generating three age groups, two state 
outcomes (binary), five degree categories, three majors, and three experience levels.  The 
continuous data set transformed the original data to a 0-1 scale with 1 representing ideal 
and 0 the nadir for each variable. 
 
3.  Experiments 
 
These data sets represent instances where there can be a high degree of imbalance in the 
data.  Data mining was applied for categorical and continuous forms of all three data sets.  
For categorical data, decision tree models were obtained using See5, logistic regression 
from Clementine, and Clementine’s neural network model applied.  For continuous data 
sets, See5 was used for a regression tree, and Clementine for regression (discriminant 
analysis) and neural network.  In each case, the training data was sorted so that a 
controlled experiment could be conducted.  First, the full model was run.  Then the 
training set was reduced in size by deleting cases with the most common outcome until 
the desired imbalance was obtained.  
 The correct classification rate was obtained by dividing the correctly classified test 
cases by the total number of test cases.  This is not the only useful error metric, especially 
when there is high differential in the cost by error type.  However, other error metrics 
would yield different solutions.  Thus for our purposes, correct classification rate serves 
the purpose of examining the degradation of accuracy expected from reducing the 
training set in order to balance the data. 
 
3.1 Loan Data Results 
 
The loan application training set included 45 late cases of 400, for a balance proportion of 
0.1125 (45/400).  Keeping the 45 late cases for all training sets, the training set size was 
reduced by deleting cases with on-time outcomes, for late-case proportions of 0.15 (300 
total), 0.2 (225 total), 0.25 (180 total),  and 0.3 (150 total).  The correct classification rates 
and cost results are shown in Tables 1 through 6. 
 The first test is shown in Table 1, using a decision tree model on categorical data. 
 
Table 1. Categorical Loan Data, Decision Tree 
 

Train Proportion Late (0) Predict 0 = 1 Predict 1 = 0 Correct 
400 0.1125 20 0 0.920 
300 0.1500 20 0 0.920 
225 0.2000 9 39 0.808 
180 0.2500 9 39 0.808 
150 0.3000 9 32 0.836 
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Using the full training set had a relatively low proportion of late cases (0.1125).  This 
tra ining set yielded a model predicting all cases to be on -time, which was correct in 0.92 
of the 250 test cases. As the training set was balanced, the correct classification rate 
deteriorated, although some cases were assigned to the late category.  Note that this trend 
was not true throughout the experiment, as when the training set was reduced to 150 
cases, the correct classification rate actually increased over the results for training set 
sizes of 180 and 225.   
 Table 2 shows the results of the logistic regression model on categorical data.   
 
Table 2. Categorical Loan Data, Logistic Regression 
 

Train Proportion Late (0) Predict 0 = 1 Predict 1 = 0 Correct 
400 0.1125 17 6 0.908 
300 0.1500 9 34 0.828 
225 0.2000 9 34 0.828 
180 0.2500 9 34 0.828 
150 0.3000 9 34 0.828 

 
Here the full training set was again best.  Balancing the data yielded the same results 
from then on. 
 Table 3 shows the results for a neural network model on categorical data.   
 
Table 3. Categorical Loan Data, Neural Network 
 

Train Proportion Late (0) Predict 0 = 1 Predict 1 = 0 Correct 
400 0.1125 20 0 0.920 
300 0.1500 15 17 0.872 
225 0.2000 13 26 0.844 
180 0.2500 13 26 0.844 
150 0.3000 9 43 0.792 

 
The results for this model were consistent with expectations.  Reducing the training set to 
balance the outcomes yielded less and less accurate results.   
 Tests were also conducted on continuous data with the same three algorithms.  
Table 4 gives the results for a linear regression model on continuous data.  These results 
were similar to those obtained with categorical data.  Here there was an anomaly with the 
training set of 180 observations, but results were not much different from expectations. 
 
Table 4. Continuous Loan Data, Regression Tree 
 

Train Proportion Late (0) Predict 0 = 1 Predict 1 = 0 Correct 
400 0.1125 20 0 0.920 
300 0.1500 15 15 0.880 
225 0.2000 8 46 0.784 
180 0.2500 9 41 0.80 0 
150 0.3000 8 46 0.784 

 
 Table 5 shows results for a discriminant analysis model applied to the continuous 
data.   
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Table 5. Continuous Loan Dat a, Discriminant Analysis Regression 
 

Train Proportion Late (0) Predict 0 = 1 Predict 1 = 0 Correct 
400 0.1125 20 0 0.920 
300 0.1500 19 1 0.920 
225 0.2000 16 7 0.908 
180 0.2500 13 20 0.868 
150 0.3000 11 28 0.844 

 
These results were slightly better than those obtained for categorical data, exhibiting the 
expected trend of decreased accuracy with smaller training set. 
 Table 6 shows the results for the neural network model applied to continuous data.  
 
Table 6. Continuous Loan Data, Neural Network 
 

Train Proportion Late (0) Predict 0 = 1 Predict 1 = 0 Correct 
400 0.1125 19 2 0.916 
300 0.1500 17 10 0.892 
225 0.2000 11 28 0.844 
180 0.2500 9 33 0.832 
150 0.3000 8 46 0.784 

 
The neural network model for continuous data was slightly less accurate than the results 
obtained from applying a neural network model to categorical data.  The trend in 
accuracy was as expected. 
 As expected, the full training set yielded the highest correct classification rate, except 
for two anomalies.  Data mining software has the capability of including a cost function 
that could be used to direct algorithms in the case of decision trees.  That was not used in 
this case, but it is expected to yield parallel results (greater accuracy according to the 
metric driving the algorithm would be obtained with larger data sets).  The best of the six 
models was the decision tree using categorical data, pruning the training set to only 150 
observations.  

Continuous data might be expected to provide greater accuracy, as it is more precise 
than categorical data.  However, this was not borne out by the results.  Continuous data is 
more vulnerable to error induced by smaller data sets, which could have been one factor.  
 
3.2 Fraud Data Set 
 
The fraud data set was more severely imbalanced, including only 60 late cases in the full 
training set of 4000.  Training sets of 3000 (0.02 late), 2000 (0.03 late), 1000 (0.06 late), 
600 (0.1 late), 300 (0.2 late), and 120 (0.5 late) were generated.  Table 7 shows the 
decision tree model results. 
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Table 7. Fraud Data Set, Categorical Data, Decision Tree 
 

Train Proportion Fraud (1) Predict 0 = 1 Predict 1 = 0 Correct 
4000 0.015 22 0 0.978 
3000 0.020 22 0 0.978 
2000 0.030 22 0 0.978 
1000 0.060 17 8 0.975 
600 0.100 17 8 0.975 
300 0.200 17 8 0.975 
120 0.500 17 8 0.975 

 
Only two sets of results were obtained.  The outcome based on larger training sets 
was degenerate – assigning all cases to be OK (not fraudulent).  This yielded a very 
good correct classification rate, as only 22 of 1000 test cases were fraudulent. 
 Table 8 gives results for the logistic regression model. 

 
Table 8. Fraud Data Set, Categorical Data, Logistic Regression 
 

Train Proportion Fraud (1) Predict 0 = 1 Predict 1 = 0 Correct 
4000 0.015 20 2 0.978 
3000 0.020 19 2 0.979 
2000 0.030 19 2 0.979 
1000 0.060 17 9 0.974 
600 0.100 17 9 0.974 
300 0.200 16 34 0.950 
120 0.500 11 229 0.760* 

* - Model with 120 in training set included 31 null predictions, due to no training 
case equivalent to test case 

 
Balancing the data from 4000 to 3000 training cases actually yielded an improved correct 
classification rate.  This degenerated when training file size was reduced to 1000, and the 
model yielded very poor results when the training data set was completely balanced, as 
only 120 observations were left.  For the logistic regression model, this led to a case 
where the test set contained 31 cases not covered by the training set. 
 Table 9 shows results for the neural network model applied to categorical data.  The 
neural network model applied to categorical data was quite stable until the last training 
set where there were only 120 observations.  At that point, model accuracy became very 
bad. 
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Table 9. Fraud Data Set, Categorical Data, Neural Network 
 
Train Proportion Fraud (1) Predict 0 = 1 Predict 1 = 0 Correct 

4000 0.015 20 1 0.979 
3000 0.020 20 2 0.978 
2000 0.030 20 2 0.978 
1000 0.060 19 2 0.979 
600 0.100 19 2 0.979 
300 0.200 17 17 0.966 
120 0.500 10 461 0.529 

 
Table 10 displays results for the regression tree applied to continuous data. 
 
Table 10 .  Fraud Data Set, Continuous Data, Regression Tree 
 

Train Proportion Fraud (1) Predict 0 = 1 Predict 1 = 0 Correct 
4000 0.015 22 0 0.978 
3000 0.020 22 0 0.978 
2000 0.030 22 0 0.978 
1000 0.060 20 8 0.972 
600 0.100 17 18 0.965 
300 0.200 17 18 0.965 
120 0.500 15 57 0.928 

 
The regression tree for continuous data had results very similar to those of the decision 
tree applied to categorical data.  For the smaller training sets, the continuous data yielded 
slightly inferior results.  
 Table 11 gives results for the discriminant analysis model. 

 
Table 11.  Fraud Data Set, Continuous Data, Discriminant Analysis Regression 
 

Train Proportion Fraud (1) Predict 0 = 1 Predict 1 = 0 Correct 
4000 0.015 22 0 0.978 
3000 0.020 22 0 0.978 
2000 0.030 22 0 0.978 
1000 0.060 17 18 0.965 
600 0.100 17 18 0.965 
300 0.200 17 18 0.965 
120 0.500 13 265 0.722 

 
The discriminant analysis model using continuous data had results with fewer anomalies 
than logistic regression obtained with categorical data, but was slightly less accurate.  It 
also was not very good when based upon the smallest training set.  The neural network 
model based on continuous data was not as good as the neural network model applied to 
categorical data, except that the degeneration for the training set of 120 was not as severe.   
 Table 12 shows relative accuracy for the neural network model applied to the 
continuous data. 
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Table 12.  Fraud Data Set, Continuous Data, Neural Network 
 

Train Proportion Fraud (1) Predict 0 = 1 Predict 1 = 0 Correct 
4000 0.015 22 0 0.978 
3000 0.020 22 0 0.978 
2000 0.030 22 1 0.977 
1000 0.060 20 9 0.971 
600 0.100 19 10 0.971 
300 0.200 17 23 0.960 
120 0.500 10 334 0.656 

 
 Overall, application of models to the highly imbalanced fraud data set behaved as 
expected for the most part.  The best fit was obtained with logistic regression and neural 
network models applied to categorical data.  Almost all of the models over the original 
data set were degenerate, in that they called all outcomes OK.  The exceptions were 
logistic regression and neural network models over continuous data.  The set of runs 
demonstrated the reverse problem of having too small a data set.  The neural network 
models for both categorical and continuous data had very high error rates for the equally 
balanced training set, as did the logistic regression model for categorical data.  There was 
a clear degeneration of correct classification rate as the training set was reduced, along 
with improved cost results, except for these extreme instances.     
 
3.3 Job Applicant Data Results 
 
This data set was far more complex, with correct classification requiring consideration of 
a four by four outcome matrix.  The original data set was small, with only 250 training 
observations, only 7 of which were excellent (135 were adequate, 79 minimal, and 29 
unacceptable).  Training sets of 140 (7 excellent, 66 adequate, 38 minimal, and 29 
unacceptable), 70 (7 excellent and 21 for each of the other three categories), 35 (7 
excellent, 10 adequate, and 9 for the other two categories), and 28 (all categories 7 cases) 
were generated.  Results are shown in Table 13. 

 
Table 13. Job Applicant Data Set, Categorical Data, Decision Tree 
 
 28 

training 
35 

training 
70 

training 
140 

training 
250 

training 
Proportion excellent  0.25 0.20 0.10 0.05 0.028 
Decision tree 0.580 0.584 0.444 0.508 0.508 
Logistic regression degenerate degenerate 0.400 0.588 0.608 
Neural net – categorical 0.416 0.448 0.392 0.604 .0604 
Regression tree 0.484 0.484 0.444 0.556 0.600 
Discriminant analysis 0.508 0.544 0.520 0.572 0.604 
Neural net - continuous 0.432 0.516 0.496 0.592 0.588 
 
The proportion correct increased as the training set size increased.  This was because 
there were three ways for the forecast to be wrong.  A naïve forecast would be expected 
to be correct 0.25 of the time.  The correct classification rate was more erratic in this 
case.  Smaller training sets tended to have lower correct classification rates, but the 
extreme small size of the smaller sets led to anomalies in results from the decision tree 
model applied to categorical data.  The results from the logistic regression model were 
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superior to that of the decision tree for the training sets of size 250 and 140.  The other 
results, however, were far inferior, and for the very small training sets were degenerate 
with no results reported.  Neural network model results over categorical data were quite 
good, and relatively stable for smaller data sets.  There was, however, an anomaly for the 
training data set of 70 observations. 
 Results for the regression tree model applied to continuous data was inferior to that of 
the decision tree applied to categorical data except for the largest training set (which was 
very close in result).  Discriminant analysis applied to continuous data also performed 
quite well, and did not degenerate when applied to the smaller data sets.  The neural 
network model applied to continuous data was again erratic.  Neural network models 
worked better for the data sets with more training observations. 
 
4   Results 
 
The logistic regression model had the best overall fit, using the full training set.  
However, this model failed when the data set was reduced to the point where the training 
set did not include cases that appeared in the test set.  The categorical decision tree model 
was very good when 140 or 250 observations were used for training, but when the 
training set was reduced to 70, it was very bad (as were all categorical models.  The 
decision tree model again seemed the most robust.  Models based upon continuous data 
did not have results as good as those based on categorical data for most training sets.   
Table 14 provides a comparison of data set features based upon these results.  
 
Table 14.  Comparison 
 

Factor Positive Features Negative Features 
Large data 
sets 
(unbalanced) 

Greater accuracy  Often degenerate (decision 
tree, regression tree, 
discriminant model) 

Smaller data 
sets 
(balanced) 

No degeneracy Can miss test instances 
(logistic) 
May yield poor fit (categorical 
neural network model) 

Categorical 
data 

Slightly greater 
accuracy (but mixed 
results) 

Less stable (small data set 
performance often the worst) 

 
5 Conclusions  

 
Key findings are that when the data is highly unbalanced, algorithms tend to degenerate 
by assigning all cases to the most common outcome.  When data is balanced, accuracy 
rates tend to decline.  If data is balanced, that reduces the training set size, and can lead to 
the degeneracy of model failure through omission of cases encountered in the test set.  
Decision tree algorithms were found to be the most robust with respect to the degree of 
balancing applied. 

Simulated data sets representing important data mining applications in business were 
used.  The positive feature of this approach is that expected data characteristics were 
controlled (no correlation of outcome with gender or state, for instance; positive 
correlations for educational level and major).  However, it obviously would be better to 
use real data.  Given access to such real data, similar testing is attractive.  For now, 
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however, this set of experiments has identified some characteristics data mining tools 
with respect to the issue of balancing data sets.  
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