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A great deal of research has been devoted to prediction of bankruptcy, to include application of data mining.
Neural networks, support vector machines, and other algorithms often fit data well, but because of lack of
comprehensibility, they are considered black box technologies. Conversely, decision trees are more compre-
hensible by human users. However, sometimes far too many rules result in another form of incomprehensi-
bility. The number of rules obtained from decision tree algorithms can be controlled to some degree through
setting different minimum support levels. This study applies a variety of data mining tools to bankruptcy
data, with the purpose of comparing accuracy and number of rules. For this data, decision trees were found
to be relatively more accurate compared to neural networks and support vector machines, but there were
more rule nodes than desired. Adjustment of minimum support yielded more tractable rule sets.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Bankruptcy prediction has been a focus of study in business analytics
because of the importance of accurate and timely strategic business deci-
sions. Even though the accuracy of the prediction model is a very impor-
tant criterion, understandability and transportability of the model are
also important. The accurate prediction of bankruptcy has been a critical
issue to shareholders, creditors, policy makers, and business managers.

There is a wealth of research that has been applied to this field
[6,9,30,33,38,42], both in finance and in other fields [38]. Among the
thousands of refereed journal articles, many recent studies have ap-
plied neural networks (NNs) [1,3,18,19,23,24,27,33,34,43,44,46,48].
Another popular approach is decision trees (DTs) [10,37,42,50]. Sup-
port vector machines (SVMs) have been proposed for smaller data-
sets with highly nonlinear relationships [12,15,21,35,40].

The vastmajority of studies in this domain have focused onNNs, and
howgood they are compared to their statistical counterpart (i.e., logistic
regression) at fitting data (fidelity [22]). However, neural network
models are black boxes [4,51], lacking transparency (seeing what the
model is doing, or comprehensibility) and transportability (being able
to easily deploy the model into a decision support system for new
cases). We argue that decision trees (DTs) can be as accurate, and pro-
vide transparency and transportability that NNs are often criticized for.

The paper is organized as follows. Section 2 reviews previous re-
search on bankruptcy prediction based on data mining methods. Sec-
tion 3 describes data mining methodologies. Section 4 discusses the
data collected and Section 5 presents data analysis and prediction
model building methods as well as the results obtained from different
data mining techniques. Section 6 gives our conclusions.

2. Data mining model transparency

Model transparency relates to human ability to understandwhat the
model consists of, leading ideally to the ability to apply it to new obser-
vations (which we might term transportability). If a model is transpar-
ent, it can be transported. Some models have consistently proven to be
strong in their ability to fit data, such as neural network models, but to
have low transparency or transportability. Neural networks by their na-
ture involve highly complex sets of node connections and weights that
can be obtained from software, but at a high cost in terms of transparen-
cy and transportability because there are so many nodes and weights.
Conversely, logistic regression (or logit regression) have a form that
can be understood and transported quite easily. Beta weights can be
used to multiply times observation measures, yielding a score that can
be used to classify new observations with relative ease. Support vector
machines share the characteristics of transparency and transportability
with neural network models. Decision tree models are highly transpar-
ent, yielding IF–THEN rules that are easier to comprehend and apply
than even regression models.

Thus the issue of transparency primarily applies to neural network
models. Önsei et al. [25] usedneural networkmodels to generateweights
of 178 criteria which were then used in a model to classify country
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competitiveness. It has been recognized in the engineeringfield that neu-
ral network models need greater transparency [20]. There have been a
number of applications [17,27,37] proposing a neurofuzzy framework
to take advantage of neural network learning ability and rule-based
transparency. Risser et al. [31] used neural networks to fit data, and
jack-knife, bootstrap, and their own validation samples to obtain trans-
parent models for evaluation of driver's license suspension. Yuan et al.
[47] proposed a fuzzy neural network controller in the electronics field
as a means to combine semantic transparency of rule-based fuzzy sys-
tems with the ability of neural networks to fit data. Chan et al. [8] used
a similar approach to support vector regression models.

3. Data mining methodology

In a comparative analysis of multiple prediction models, it is a
common practice to split the complete data set into training and test-
ing sub sets, and compare and contrast the prediction models based
on their accuracy on the test data set. In splitting the data into train-
ing and testing dataset one can choose to make a single split (e.g., half
of the data for training and other half of the data for testing) or mul-
tiple splits, which is commonly referred to as k-fold cross validation.
The idea behind k-fold cross validation is to minimize the bias associ-
ated with the random sampling of the training and holdout data sam-
ples. Specifically, in k-fold cross validation the complete data set is
randomly split into k mutually exclusive subsets of approximately
equal size. Each prediction model is trained and tested k times using
exactly the same k data sets (i.e., folds). Each time, the model is

trained on all but one folds and tested on the remaining single fold.
The cross validation estimate of the overall accuracy of a model is cal-
culated by averaging the k individual accuracy measures as shown in
the following equation

OA ¼ 1
k

Xk

i¼1

Ai

where OA stands for overall cross validation accuracy, k is the number
of folds used, and A is the accuracy measure of each folds.

Since the cross-validation accuracy would depend on the random
assignment of the individual cases into k distinct folds, a common
practice is to stratify the folds themselves. In stratified k-fold cross val-
idation, the folds are created in a way that they contain approximately
the same proportion of predictor labels as the original dataset. Empir-
ical studies showed that stratified cross validation tend to generate
comparison results with lower bias and lower variance when com-
pared to regular cross-validation [16]. In this study, to estimate the
performance of predictors a stratified 10-fold cross validation ap-
proach is used. Empirical studies showed that 10 seem to be an “opti-
mal” number of folds (that balances the time it takes to complete the
test and the bias and variance associated with the validation process)
[7,16]. The methodology followed in the study is depicted in Fig. 1.

3.1. Prediction methods

In this study, several popular classification methods (e.g., artificial
neural networks, decision trees, support vector machines and logistic
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Fig. 1. A graphical depiction of the methodology followed in this study.

465D.L. Olson et al. / Decision Support Systems 52 (2012) 464–473



Author's personal copy

regression) are applied and compared to each other using predictive
accuracy on the test data samples. What follows are brief descriptions
of the prediction models used in this study:

Artificial neural networks (ANN) are biologically inspired analyti-
cal techniques, capable of modeling extremely complex non-linear
functions [13]. In this study we used two popular neural network ar-
chitectures, multi-layer perceptron (MLP) with a back-propagation
and radial basis function (RBF). These two supervised learning algo-
rithms are strong function approximators for prediction as well as
classification type prediction problems. These two are arguably the
most commonly used and well-studied ANN architectures. Even
though they are comparable to each other in term of their prediction

ability, Hornik et al. [14] empirically showed that given the right
size and structure, MLP is capable of learning arbitrarily complex
nonlinear functions to an arbitrary accuracy level. A pictorial repre-
sentation of the ANN architecture used in this study is shown in
Fig. 2.

Decision trees are powerful classification algorithms that are be-
coming increasingly more popular due to their intuitive explainability
characteristics. Popular decision tree algorithms include Quinlan's
[28,29] ID3, C4.5, C5, and Breiman et al.'s [5] CART (Classification
and Regression Trees), Best First Decision Tree and AD Decision
Tree. In this study we used all of these decision tree algorithms.

Logistic regression is a generalization of linear regression. It is used
primarily for predicting binary or multi-class dependent variables. Be-
cause the response variable is discrete, it cannot be modeled directly
by linear regression. Therefore, rather than predicting a point estimate
of the event itself, it builds the model to predict the odds of its occur-
rence. While logistic regression has been a common statistical tool for
classification problems, its restrictive assumptions on normality and in-
dependence led to an increased use and popularity of machine learning
techniques for real-world prediction problems.

Support Vector Machines (SVMs) belong to a family of generalized
linear models which achieves a classification or regression decision
based on the value of the linear combination of features. The mapping
function in SVMs can be either a classification function (used to cate-
gorize the data, as is the case in this study) or a regression function
(used to estimate the numerical value of the desired output). For clas-
sification, nonlinear kernel functions are often used to transform the
input data (inherently representing highly complex nonlinear rela-
tionships) to a high dimensional feature space in which the input
data becomes more separable (i.e., linearly separable) compared to
the original input space. Then, the maximum-margin hyperplanes
are constructed to optimally separate the classes in the training
data. Two parallel hyperplanes are constructed on each side of the hy-
perplane that separates the data by maximizing the distance between

INPUT
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Bankruptcy?
(Yes/No)

Predicted 
vs. Actual

Backpropagation

Fig. 2. The MLP architecture used in this study.

Table 1
Attributes in bankruptcy data.

No Short name Long name

1 fyear Data year — fiscal
2 cik CIK number
3 at Assets — total
4 bkvlps Book value per share
5 invt Inventories — total
6 Lt Liabilities — total
7 rectr Receivables — trade
8 cogs Cost of goods sold
9 dvt Dividends — total
10 ebit Earnings before interest and taxes
11 gp Gross profit (loss)
12 ni Net income (loss)
13 oiadp Operating income after depreciation
14 revt Revenue — total
15 sale Sales-turnover (net)
16 dvpsx_f Dividends per share – ex-date – fiscal
17 mkvalt Market value – total – fiscal
18 prch_f Price high – annual – fiscal
19 bankruptcy Bankruptcy (output variable)
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the two parallel hyperplanes. An assumption is made that the larger
the margin or distance between these parallel hyperplanes the
lower the generalization error of the classifier will be [11].

3.2. Data description

Altman [2] was one of the first researches to predict the corporate
bankruptcy. Altman used the classical multivariate discriminate anal-
ysis (MDA) technique, which was based on applying the Bayes

classification procedure, under the assumption that the two classes
have Normal distributions with equal covariance matrices. Altman
used the following financial ratios as inputs: working capital/total as-
sets; retained earnings/total assets; earnings before interest and
taxes/total assets (ROA); market capitalization/total debt; and sales/
total assets (asset turnover). Both the MDA model and the logistic re-
gression model (hereafter LR) have been widely used in practice and
in many academic studies. They have been standard benchmarks for
the loan default prediction problem. Whereas research studies on

Table 2
C5 decision tree from IBM's SPSS data mining tool.

Bankrupt
{Pr}

IF revt
≤76.592

IF Lt
≤13.910

IF dvt≤0 IF rectr
≤5.010

IF prch_f
≤1.400

IF bkvlps
≤0.255

IF gp
≤1.363

IF revt
≤2.888

No {0.913}

" " " " " " " IF revt>2.888 IF at≤1.516 Yes {1.0}
" " " " " " " " IF at>1.516 No {0.833}
" " " " " " IF gp>1.363 No {1.0}
" " " " " IF

bkvlps>0.255
IF bkvlps≤0.498 Yes {1.0}

" " " " " " IF bkvlps>0.498 No {0.857
" " " " IF

prch_f>1.400
No {0.986}

" " " IF rectr>5.010 IF Lt≤7.767 Yes {0.875}
" " " IF Lt>7.767 No {0.778}
" " IF dvt>0 No {1.0}
" IF Lt>13.910 IF cogs≤0.117 Yes {0.909}
" " IF cogs>0.117 IF

ebit≤−2.515
IF ni≤3.951 IF rectr≤4.714 No {0.833}

" " " " " IF rectr>4.714 Yes {0.692}
" " " " IF ni>−3.951 Yes {1.0}
" " " IF ebit>

−2.515
No {0.888}

IF revt
>76.592

IF dvpsx_f
≤0.210

IF Lt
≤251.123

IF invt
≤20.691

Yes {0.967}

" " " IF invt>20.691 IF dvt≤0.047 IF Lt≤197.286 IF prch_f≤6.251 Yes {1.0}
" " " " " " IF prch_f>6.251 IF

invt≤54.143
IF
cogs≤112.392

No {0.750}

" " " " " " " " IF
cogs>112.392

No {0.750}

" " " " " " " IF
invt>54.143

No {1.0}

" " " " " " IF prch_f>19.140 Yes {0.923}
" " " " " IF Lt>197.286 Yes {1.0}
" " " " IF dvt>0.047 IF dvt≤1.125 No {0.900}
" " " " " IF dvt>1.125 Yes {0.750}
" " IF Lt>251.123 Yes {0.978}
" IF dvpsx_f 0.210 IF

rect4r≤237.496
IF at≤1815.05 IF invt≤16.117 Yes {0.909}

" " " " IF invt>16.117 IF at≤1042.87 IF
dvpsx_f≤2.250

No {0.933}

" " " " " " IF
dvpsx_f>2.250

Yes {0.833}

" " " " " IF at>1042.87 Yes {0.917}
" " " IF at>1815.05 No {1.0}
" " IF rectr>237.496 Yes {1.0}

Table 3
CART decision tree from IBM's SPSS data mining tool.

Bankrupt {Prob}

IF revt≤70.447 IF Lt≤13.914 No {0.917}
IF Lt>13.914 IF ebit≤0.137 IF ni≤−3.882 IF rectr≤4.798 No {0.821}

IF rectr>4.798 Yes {0.643}
IF ni>−3.882 Yes {0.692}

IF ebit>0.137 No {0.897}
IF revt>70.447 IF Lt≤200.252 IF invt≤29.001 Yes {0.862}

IF invt>29.001 IF bkvlps≤9.228 IF cogs≤189.341 No {0.696}
IF cogs>189.341 Yes {0.864}

IF bkvlps>9.228 No {0.809}
IF Lt>200.252 Yes {0.927}
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using artificial neural network (hence ANN) for bankruptcy predic-
tion started in 1990, and are still active now.

Sample data contained 100 US firms that underwent bankruptcy
firms. There were multiple records from different years for the same
firm. We first obtained about 400 bankrupt company names using
google.com in 2010, and next identified the Ticker name of each com-
pany using the Compustat database. We separately obtained data on
companies bankrupted during January 2006 and December 2009,
since we also wanted to analyze the effects of the economic crisis.
After getting the company Ticker code list, obtained financial ratios
for the period January 2005 to December 2009 for these firms from
the Compustat database. Those financial data and ratios are factors
that we can use to predict company bankruptcy. The factors we col-
lected are based on the literature, which contain total asset, book
value per share, inventories, liabilities, receivables, cost of goods
sold, total dividends, earnings before interest and taxes, gross profit

(loss), net income (loss), operating income after depreciation, total
revenue, sales, dividends per share, and total market value. In order
to compare, we collected the same financial ratios for a roughly
equal number of non-failed companies during the same periods.
First we used the LexisNexis database to find the company SEC filling
after June 2010, which means that companies were still active at the
time of this research, and then we selected 100 companies from the
results and identified the company CIK code list. Finally we submitted
the CIK code list to the Compustat database and got the financial data
and ratios during January 2005 to December 2009, which is the same
period with that of the failed companies. The reason was to have
equal number of samples for bankrupt and non-bankrupt companies.

After all of the data collection and organization, the final data set
used in this study consisted of 1321 records with full data over 19 at-
tributes as shown in Table 1. The outcome attribute was bankruptcy,
which has a value of 1 if the firm went bankrupt by 2011 (697 cases),
and a value of 0 if it did not (624 cases).

4. Results

The data was modeled using IBM SPSS Modeler (for logistic re-
gression, radial-basis function neural network, C5 and CART decision
tree, and support vector machine (SVM) models). WEKA software
was used for comparison when models were available, with expand-
ed decision tree tools [45]. WEKA had more decision tree options.

It is obvious that different models had different accuracies, as is to
be expected. For this particular set of data, logistic regression was less
accurate than decision trees, but more accurate than the radial basis
functions run in WEKA. Support vector machines worked less well
on this data than any of the other models. Decision tree models
were usually better fits for this particular set of data, although neural
networkmodel parameters can be set to better fit any particular set of
data (at some cost of analyst time).

Results from IBM's SPSS data mining tool indicate that for this spe-
cific set of data, the best fit was obtained with the C5 decision tree
model (0.937 correct classification). The second best fit was obtained
with the CART model (also a decision tree). The support vector ma-
chine model had a relatively low correct classification fit of 0.661.

Table 4
Comparative correct fits.

Software Model Correct classification

IBM SPSS Logistic regression 0.798
WEKA " 0.813
IBM SPSS Neural network (RBF) 0.798
WEKA " 0.609
IBM SPSS C5 decision tree 0.937
IBM SPSS CART decision tree 0.898
WEKA " 0.932
IBM SPSS SVM 0.661
WEKA Best First decision tree 0.929
WEKA All dimensions decision tree 0.903
WEKA J48 decision tree 0.948

Table 5
WEKA decision tree accuracy versus minimum support.

Model Minimum support Leaves Branches % Correct

Best First 2 46 91 0.899
" 3 39 77 0.893
" 4 34 67 0.891
" 5 26 51 0.889
" 6 20 39 0.886
" 7 18 35 0.877
" 8 16 31 0.874
" 9 14 27 0.874
" 10 12 23 0.870
" 15 4 7 0.869
" 20 8 15 0.869
" 25 8 15 0.871
J48 DT 2 52 103 0.914
" 3 47 93 0.914
" 4 45 89 0.902
" 5 43 85 0.899
" 6 38 75 0.900
" 7 36 71 0.899
" 8 35 69 0.899
" 9 32 63 0.905
" 10 32 63 0.896
" 15 24 47 0.876
" 20 15 29 0.866
" 25 14 27 0.866
CART 2 44 87 0.890
" 3 41 81 0.886
" 4 32 63 0.888
" 5 33 65 0.886
" 6 31 61 0.889
" 7 16 31 0.880
" 8 4 7 0.875
" 9 4 7 0.874
" 10 12 23 0.877
" 15 6 11 0.865
" 20 5 9 0.869
" 25 5 9 0.871

Fig. 3. Relative WEKA decision tree accuracies by minimum support.

Table 6
WEKA J48 decision tree model results.

Confidence Minimum support Leaves Branches % Correct Attributes used

0.10 2 48 95 0.912 15
0.25 " 52 103 0.914 15
0.50 " 52 103 0.914 15
0.10 10 23 45 0.891 12
0.25 " 32 63 0.896 14
0.50 " 32 63 0.896 14
0.10 20 11 21 0.873 6
0.25 " 15 29 0.866 7
0.50 " 15 29 0.868 8
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Replicating the analysis with WEKA tools attain found the best fits for
decision tree models (the standard J48 decision tree model yielding
the overall highest accuracy). Of course, model fit varies widely across
data sets, and fine tuning either decision trees or neural network
models can improve classification accuracy. But the primary advan-
tage of decision trees is their transparency.

The IBM SPSS Modeler's C5model involved a rather complicated set
of rules, using 13 of the 18 available variables in 30 branches with 31
decision-concluding nodes. The decision tree is shown in Table 2.

The length of decision trees can be controlled by varying mini-
mum support and pruning, so we are not claiming generalizable dif-
ferences in the number of rules by method. But we are trying to
demonstrate the complexity involved for human application in hav-
ing too many rules.

Table 3 shows the much shorter model obtained from CART for
this data.

The proportion of “No” results for the population was 624 out of
1321 cases, or a proportion of 0.472. The model had an average correct
classification rate (after 10-fold cross validation sampling) of 0.898. Five
variables were used in ten rows of rules. The CART model had a slightly
inferior fit (0.898 correct classification versus 0.937 for the C5 model),
but required only 9 branches with ten decision-concluding nodes
based upon 8 variables. While this is less than the 0.937 obtained with
the C5 model, it is more concise, and therefore more usable. The C5
model involved 13 variables with 31 rows of rules. The more concise
model requires users to find less data, and is expected to involve less
uncertainty. Table 4 compares model fits for IBM SPSS and WEKA
models, all using 1321 observations:

A WEKA J48 model used 46 rows of rules involving 13 variables.
Thus the J48 model was even less concise than the C5 model from
IBM's SPSS tool. The J48 model did correctly classify 0.948 of the
cases tested. However, this again demonstrates the tradeoff between
model accuracy and transparency/transportability.

Our interest is in comparing the decision tree models. WEKA pro-
vides the ability to adjust the parameter for minimum support. Larger
minimum support requirements yield fewer rules. Table 5 and Fig. 3

Table 8
CART decision tree from WEKA with minimum support of 9.

Yes No Bankrupt {Prob}

IF revtb77.696 80 522 No {0.867}
IF revt≥77.696 IF dvpsx_fb0.215 531 42 Yes {0.927}

IF dvpsx_f≥0.215 IF dvtb32.381 31 57 No {0.648}
" " IF dvt≥32.381 55 3 Yes {0.948}

Table 9
J48 decision tree from WEKA with minimum support of 15.

Bankrupt {Pr}
total/error

IF revt≤76.592 IF Lt≤13.91 IF dvt≤0 IF rectr≤5.01 IF fyear≤2007 IF prch_f≤1.4 IF cogs≤2.089 No {0.894} 84/10
" " " " " " IF cogs>2.089 IF gp≤1.76 Yes {0.800} 20/5
" " " " " " " IF gp>1/76 No {0.889} 24/3
" " " " " IF prch_f>1.4 No {0.982} 110/2
" " " " IF fyear>2.007 No {1.0} 77/0
" " " IF rectr>5.01 Yes {0.680} 17/8
" " IF dvt>0 No {1.0} 125/0
" IF Lt>13.91 IF revt≤8.73 Yes {0.733} 22/6
" " IF revt>8.73 IF dvpsx_f≤0.01 IF at≤139.611 No {0.871} 61/9
" " " " IF at>139.611 Yes {0.714} 25/10
" " " IF dvpsx_f>0.01 No {0.974} 37/1
IF revt>76/592 IF dvpsx_f≤0.21 IF Lt≤251.123 IF invt≤20.691 Yes {0.968} 61/2
" " " IF invt>20.691 IF dvt≤0.047 IF Lt≤197.286 IF prch_f≤6.251 Yes {1.0} 15/0
" " " " " " IF prch_f>6.251 IF mkvalt≤86.9214 No {0.800} 16/4
" " " " " " " IF mkvalt>86/9214 Yes {0/771} 27/8
" " " " " IF Lt>197.286 Yes {1.0} 22/0
" " " " IF dvt>0.047 No {0.720} 18/7
" " IF Lt>251.123 Yes {0.979} 414/9
" IF dvpsx_f>0.21 IF rectr≤237.496 IF Lt≤1319.934 IF invt≤16.117 Yes {0.917} 22/2
" " " " IF invt>16.117 IF invt≤72.857 No {1.0} 24/0
" " " " " IF invt>72.857 IF mkvalt≤465.9829 Yes {0.889} 16/2
" " " " " " IF mkvalt>465.9829 No {0.815} 22/5
" " " IF Lt>1319.934 No {1.0} 15/0
" " IF rectr>237.496 Yes {1.0} 47/0

Table 10
J48 decision tree from WEKA with minimum support of 20.

Bankrupt {Pr} total/error

IF revt≤76.592 IF Lt≤13.91 No {0.921} 457/39
" IF Lt>13.91 IF revt≤0.873 Yes {0.786} 22/6
" " IF revt>8.73 IF dvpsx_f≤0.01 IF at≤139.611 No {0.871} 61/9
" " " " IF at>139.611 Yes {0.714} 25/10
" " " IF dvpsx_f>0.01 No {0.974} 37/1
IF revt>76.592 IF dvpsx_f≤0.21 IF Lt≤251.123 IF invt≤20.691 Yes {0.968} 61/2
" " " IF invt>20.691 IF ni≤−3.252 Yes {0.889} 32/4
" " " " IF ni>−3.252 IF Lt≤88.296 No {0.735} 25/9
" " " " " IF Lt >88.296 Yes {0.788} 41/11
" " IF Lt>251.123 Yes {0.979} 414/9
" IF dvpsx_f>0.21 IF rectr≤237.496 IF gp≤254.644 IF dvpsx_f≤0.69 IF gp≤86.628 No {0.906} 29/3
" " " " " IF gp>86.628 Yes {0.686} 24/11
" " " " IF dvpsx_f>0.69 Yes {0.889} 24/3
" " " IF gp>254.644 No {0.917} 22/2
" " IF rectr>237.496 Yes {1.0} 47/0
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show the number of rules (decision tree leaves) and accuracy for dif-
ferent WEKA decision tree models.

The WEKA J48 model seemed to provide superior fit (at least for
smaller minimum support levels). This model has a confidence pa-
rameter that can be set in addition to minimum support. We ran
models as shown in Table 6 to see the impact of confidence factor.
We chose minimum support levels of 2, 10, and 20 to get diverse set-
tings after seeing the results shown in Table 5.

Table 11
J48 decision tree from WEKA with minimum support of 25.

Bankrupt {Pr} total/error

IF revt≤76.592 IF Lt≤13.91 No {0.940} 457/39
" IF Lt>13.91 IF ebit≤1.015 IF invt≤1.421 IF ni≤−4.884 No {0.694} 25/11
" " " " IF ni>−4.884 Yes {0. 862} 25/4
" " " IF invt>1.421 No {0.868} 33/5
" " IF ebit>1.015 No {0.939} 62/4
IF revt>76.592 IF dvpsx_f≤0.21 IF Lt≤251.123 IF invt≤20.691 Yes {0.968} 61/2
" " IF invt>20.691 IF ni≤−3.252 Yes {0.889} 32/4
" " " " IF ni>−3.252 IF Lt≤88.296 No {0.735} 25/9
" " " " " IF Lt>88.296 Yes {0.788} 41/11
" " IF Lt>251.123 Yes {0.979} 414/9
" IF dvpsx_f>0.21 IF rectr≤237.496 IF gp≤239.833 IF revt≤353.155 No {0.865} 32/5
" " " " IF revt>353.155 Yes {0.792} 42/11
" " " IF gp>239.833 No {0.893} 25/3
" " IF rectr>237.496 Yes {1.0} 47/0

Table 12
BFTree MS=10.

Bankrupt {Pr} total/error

IF revtb77.696 No {0.867} 522/80
IF revt≥77.696 IF dvpsx_fb0.215 IF Ltb251.53 IF invtb60.0275 Yes {0.878} 101/14
" " " IF invt≥60.0275 IF rectrb10.746 Yes {1.0} 13/0
" " " " IF rectr≥10.746 No {0.613} 19/12
" " IF Lt≥251.53 IF revtb293.7785 IF fyearb2006.5 Yes {1.0} 30/0
" " " " IF fyear≥2006.5 No {0.700} 7/3
" " " IF revt≥293.7785 Yes {0.995} 372/2
" IF dvpsx_f≥0.215 IF dvtb32.381 IF invtb13.513 IF atb827.2125 Yes {1.0} 14/0
" " " " IF at≥827.2125 No {0.833} 10/2
" " " IF invt≥13.513 IF atb1043.2265 No {0.913} 42/4
" " " " IF at≥1043.2265 Yes {0.687} 11/5
" " IF dvt≥32.381 Yes {0.948} 55/3

Table 13
BFTree MS=15.

Bankrupt {Pr} total/error

IF revtb77.696 No {0.867} 522/80
IF revt≥77.696 IF dvpsx_fb0.215 Yes {0.927} 531/42
" IF dvpsx_f≥0.215 IF dvtb32.381 IF invtb13.513 Yes {0.615} 16/10
" " " IF invt≥13.513 IF atb1043.2265 No {0.913} 42/4
" IF at≥1043.2265 Yes {0.687} 11/5
" " IF dvt≥32.381 Yes {0.948} 55/3

Table 14
BFTree MS=20.

Bankrupt {Pr} total/error

IF revtb77.696 No {0.867} 522/80
IF revt≥77.696 IF dvpsx_fb0.215 Yes {0.927} 531/42
" IF dvpsx_f≥0.215 IF dvtb32.381 IF invtb13.513 Yes {0.615} 16/10
" " " IF invt≥13.513 No {0.758} 47/15
" " IF dvt≥32.381 Yes {0.948} 55/3

Table 15
BFTree MS=25.

Bankrupt {Pr} total/error

IF revtb77.696 No {0.847} 522/80
IF revt≥77.696 IF dvpsx_fb0.215 Yes {0.921} 531/42
" IF dvpsx_f≥0.215 IF dvtb32.381 No {0.456} 57/31
" " IF dvt≥32.381 Yes {0.945} 55/3
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The confidence factor does not seem to have a big impact. For min-
imum support of 2, confidence settings of 0.25 and 0.50 yielded pre-
cisely the same model (although the proportion correct reported
varied slightly). Using minimum support of 10 yielded the same
model with all three confidence levels. For minimum support of 20,
confidence settings of 0.25 and 0.50 models were identical. Thus we
used the default confidence setting of 0.25.

4.1. Tradeoff — fidelity and transparency

It can be seen that the number of decision rules (leaves) tends to
decrease with higher minimum support, while correct classification
also decreases with higher minimum support. The more rules, the
more difficult to apply (transport) the model. Thus there is a tradeoff
between accuracy and transportability. For instance, the CART model
obtained from WEKA with minimum support of 9 yielded the set of
rules given in Table 7. The last column shows the rule outcome, and
the proportion correct over the training set.

This model involved 22 concluding leaves with 11 attributes. It
had an accuracy of 0.924 on average over the 10-fold testing. The
CART model with minimum support set at 9 is given in Table 8:

There is a clear advantage for the last set of decision rules obtained
with minimum support of 9, with only 12 leaves involving 7 attri-
butes, versus the case where minimum support was 5 (22 leaves in-
volving 11 attributes. The tradeoff in lost accuracy is slight — the
model with minimum support of 5 tested at 0.924 accuracy, versus
0.897 for the model with minimum support of 9. Tables 8, 9 and 10
show the resulting decision rules, with greater transportability
attained from higher minimum support levels. Tables 9, 10 and 11
give decision tree rules for WEKA J48 decision trees with varying
minimum support levels. The last column shows the rule outcome,
and the proportion correct over the training set. The total number
of cases for each rule is given separated by “/” from the erroneous
cases.

The correct classifications for these three decision trees are fairly
similar (0.900 for MS=15, 0.877 for MS=20, 0.875 for MS=25).
The number of rules dropped from 21 for the MS=15 model to 16
for the MS=20 model to 10 for the MS=25 model. The number of

MS2 MS3 MS4 MS5 MS6 MS7 MS8 MS9 MS10 MS15 MS20 MS25

fyear x x x x x x x x x
cik x x x x x x x x x x x x
at x x x x x x x x x
bkvlps x x x x x x x x x x
invt x x x x x x x x x x x
Lt x x x x x x x x x x x x
rectr x x x x x x x x x x x x
cogs x x x
dvt x x x x x x x x
ebit x x x x x x x x x x
gp x x
ni x
oiadp
revt x x x x x x x x x x x x
sale
dvpsx_f x x x x x x x x x x x x
mkvalt x x x x x x x x x
prch_f
Bankruptcy
# attributes 12 13 13 14 12 12 10 10 10 11 7 8
Leaves 46 41 38 34 31 31 29 28 28 21 16 10
Tree size 91 81 75 67 61 61 57 55 55 41 31 19
Correct 0.948 0.943 0.942 0.931 0.936 0.927 0.924 0.921 0.923 0.9 0.877 0.875

attributes ranged from 8 for MS=25, 7 for MS=20, and 11 for
MS=15. Clearly the MS=25 model is easier to implement.

The Best First Decision Tree models showed a similar pattern, as
shown in Tables 12, 13, 14, and 15:

Again, there is a clear reduction in rule size with higher minimum
support. The number of variables included in the decision tree will
tend to decline with higher minimum support as well (see Appendix
A). There is usually a cost in terms of correct classification, but fewer
attributes leave less error potential from having to estimate attribute
values in application.

5. Conclusions

Any particular set of data will have different relative fits from dif-
ferent data mining models. That is why it is conventional to apply lo-
gistic regression, neural networks, and decision trees to data. Neural
network models often provide very good fit with a particular data
set, but they are not transparent nor easily transportable. Decision
tree models are expressed in easily understood terms. A common
problem with decision trees is that models generate too many rules.
This can be controlled by increasing the minimum support required
for a rule.

Our study demonstrated this point. For this data, the overall best
fit (0.948 average accuracy) was obtained with a WEKA J48 decision
tree model with minimum support of 2. However, that involved 46
leaves to the decision tree. Even setting the minimum support to 9
yielded 28 leaves to the tree involving 11 attributes (average accuracy
dropping to 0.921). While the set of rules is transportable and trans-
parent, it is bulky and complex. A decision tree obtained from a
WEKA CART model with minimum support of 9 yielded a model we
would argue was preferable, involving 12 leaves to the tree and 7 at-
tributes. There was degradation in average testing accuracy (dropping
to 0.897).

The particular choice would depend upon user preferences. Our
point is that there is a tradeoff between average accuracy and decision
tree size that can be controlled through the minimum support
parameter.

Appendix A. J48 model results
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