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ABSTRACT

The technique for order preference by similarity to ideal solution (TOPSIS) is a technique that 
can consider any number of measures when seeking to identify solutions close to an ideal and 
far from a nadir solution. TOPSIS traditionally has been applied in multiple criteria decision 
analysis. In this article, we propose an approach to develop a TOPSIS classifier. We demonstrate 
its use in credit scoring, providing a way to deal with large sets of data using machine learn-
ing. Data sets often contain many potential explanatory variables, some preferably minimized, 
some preferably maximized. Results are favorable by a comparison with traditional data mining 
techniques of decision trees. Proposed models are validated using Mont Carlo simulation.

Keywords: classification; data mining; machine learning; Monte Carlo simulation; TOPSIS

INTRODUCTION
The technique for order preference by sim-

ilarity to ideal solution (TOPSIS) is a classical 
method to solve multicriteria decision-making 
(MCDM) problem first developed by Hwang 
and Yoon (1981), subsequently discussed by 
many (Chu, 2002; Olson, 2004b; Peng, 2000). 
TOPSIS is based on the concept that alterna-
tives should be selected that have the shortest 
distance from the positive ideal solution (PIS) 

and the farthest distance from the negative ideal 
solution (NIS), or nadir. The PIS has the best 
measures over all attributes, while the NIS has 
the worst measures over all attributes.

Multiattribute decision-making (MCDM) 
problem recently has received attention from 
artificial intelligence, machine learning, and 
data mining communities (Arie & Leon, 
2005; Spathis, Doumpos, & Zopounidis, 2002; 
Zopounidis & Doumpos, 1999). Based on 
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preference disaggregation approach estimates, 
a set of additive utility functions and utility 
profiles using linear programming techniques, 
Zopounidis and Doumpos (1999) present an 
application of the Utilities Additives Dis-
criminantes (UTADIS) method in real-world 
classification problems concerning the field 
of financial distress. Spathis et al. (2002) pro-
posed a multicriteria decision aid method for 
an innovative classification methodology in 
detecting firms’ falsified financial statements 
(FFS) and in identifying the factors associated 
with FFS. The proposed method is believed to 
outperform traditional statistical techniques on 
a sample of 76 Greek firms.

As an MCDM technique, TOPSIS also 
provides a mechanism that is attractive in data 
mining (Olson & Wu, 2005), because it can 
consider a number of attributes in a systematic 
way without very much subjective human input. 
Data, whether discrete or continuous, are stan-
dardized to a range between 0 and 1. TOPSIS 
does include weights over the attributes that 
are considered. However, such weights can be 
obtained through regression of standardized 
data (where measurement scale differences 
are eliminated (Olson, 2004b). This allows 
machine learning in the sense that data can be 
analyzed without subjective human input. This 
article demonstrates the method to automatically 
classify credit score data into groups of high 
expected repayment and low expected repay-
ment, based upon the concept of TOPSIS.

TOPSIS FOR DATA MINING
The overall approach is to begin with a 

set of data, which, in traditional data mining 
practice, is divided into training and test sets. 
Data may consist of continuous or binary nu-
meric data, with the outcome variable being 
binary. A training data set is used to identify 
maximum and minimum measures for each 
attribute. The training set then is standardized 
over the range of 0 to 1, with 0 reflecting the 
worst measure and 1 the best measure over each 
attribute. Then, relative weight importance is 
obtained by regression over the standardized 
data in order to explain outcome performance 

in the training data set. (An intermediate third 
data set could be created for generation of 
weights, if desired.) 

TOPSIS DATA MINING 
METHOD

The algorithm we propose consists of 
following steps:

Step 1: Data Standardization 
In accordance with the prior presentation, 

training data set is standardized so that each 
observation j over each attribute i is between 
0 and 1. Let the decision matrix X consist of m 
indicators over n observations. The normalized 
matrix transforms the X matrix. For indicator 
i = 1 to m, identify the minimum xi

- and the 
maximum xi

+. Then, each observation xi
j for 

j = 1 to n can be normalized by the following 
formulas:

For measures to be maximized:
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For measures to be minimized:
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which yields values between 0 (the worst) and 
1 (the best).

Step 2: Determine Ideal and Nadir 
Solutions

The ideal solution consists of standard-
ized values of 1 over all attributes, while the 
nadir solution consists of values of 0 over all 
attributes. 

Step 3: Calculate Weights
In decision analysis, these weights would 

reflect relative criterion importance (as long 
as scale differences are eliminated through 
standardization). Here, we are interested in the 
relative value of each attribute in explaining 
the outcome of each case. These m weights wi 
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will be between 0 and 1 and will have a sum 
of 1. Because weights are continuous, we use 
ordinary least squares (OLS) regression over 
the standardized data in order to obtain i = 
1 to m different weights from regression βi 
coefficients. 

0 ≤ wi ≤ 1, 
1

1
m

i
i

w
=

=∑

Step 4: Calculate Distances
TOPSIS operates by identifying Di

+ the 
weighted distance from the ideal, and Di

- the 
weighted distance from the nadir. Different 
metrics, such as L1, L2, or L∞, could be used 
(Dielman, 2005; Freimer & Yu, 1976). Least 
absolute value regression (L1) has been found 
to be useful when it is desired to minimize the 
impact of outlying observations and has been 
shown to be effective in a variety of applica-
tions, such as real estate valuation (Caples & 
Hanna, 1997) and sports ratings (Bassett, 1997). 
The ordinary least squares metric L2 is widely 
used. The Tchebychev metric (L∞) focuses on 
the extreme performance among the set of 
explanatory variables. Each metric focuses on 
the different features described. Olson (2004) 
found L1 and L2 to provide similar results, both 
better than L∞. The weights from Step 3 are 
used. Lee and Olson (2004) compared differ-
ent metrics for predicting outcomes of binary 
games and found L2 and L∞ to provide similar 
results, both better than L1. Thus, none of these 
metrics is clearly superior to the others for any 
specific set of data. For L1 metric, the formula 
of weighted distance from the ideal is:
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The weighted distance from the nadir 
solution is:
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The formulas for L2 metric are very 
similar:
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The weighted distance from the nadir 
solution is:
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The L∞ metric (the Tchebycheff metric) by 
formula involves the infinite root of an infinite 
power, but this converges to emphasizing the 
maximum distances. The weights become ir-
relevant. Thus, L∞ distance measures are:

−∞
jD  = MAX{yij}; +∞

jD   = MAX{ 1 - yij} 
    (7)

Step 5: Calculate Closeness Coefficient
Relative closeness considers the distances 

from the ideal (to be minimized) and from the 
nadir (to be maximized) simultaneously through 
the TOPSIS formula:
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Step 6: Determine Cutoff Limit for 
Classification

The training data set contained a subset 
of observations in each category of interest. In 
a binary application (e.g., segregating training 
observations into loans that were defaulted Neg 
and loans that were repaid Pos), the proportion 
of Neg observations PNeg is identified. The close-
ness coefficient Cj has high values for cases that 
are close to the ideal and far from the nadir and, 
thus, can be sorted with low values representing 
the worst cases. Thus, the rank of the largest 
sorted observation in the Neg subset JNeg would 
be PNeg × (Neg + Pos). The cutoff limit CLim 
can be identified as a value greater than that of 
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ranked observation JNeg but less than that of the 
next largest ranked observation.

Step 7: Apply Formula
For new cases with unknown outcomes, 

the relative closeness coefficient Cj can be cal-
culated by formula (7) and compared with the 
cutoff limit obtained in Step 6. The only data 
feature that needs to be considered is that it is 
possible for test data to contain observations 
outside the range of data used to determine 
training parameters. 

IF yij < 0 THEN yij = 0
IF yij > 1 THEN yij = 1

This retains the standardized features of 
test data. The model application then is obtained 
by applying the rules to test data:

IF Cj < CLim THEN classification is Negative
IF Cj > CLim THEN classification is Positive

Model fit is tested by traditional data min-
ing coincidence matrices.

EXPERIMENT DATA SET
A company’s financial performance can 

be represented by various ratios taken from 

financial statements (Barnes, 1987; Deng, Yeh, 
& Willis, 2000). Such ratios provide useful in-
formation in order to describe credit conditions 
from various perspectives, such as financial 
conditions and credit status. The diagnostic 
process involves multiple criteria. We present 
a real set of loan cases from Canadian banking. 
The data reflect operations in 1995 and 1996. 
There are 177 observations for 1995 (17 de-
faulting, 160 good) and 126 (11 defaulting, 115 
good) for 1996. While the data set is unbalanced 
(banks would hope that it was), it is typical. 
Models for decision trees can be susceptible 
to degeneration, as they often classify all ob-
servations in the good category (Olson, 2004). 
This did not prove to be a problem with this 
data set, but Laurikkala (2002) and Bull (2005) 
provide procedures to deal with such problems 
of unbalanced data, if they detrimentally affect 
data mining models. The data set consisted 
of the outcome variable (categorical: default, 
good) and 12 continuous numeric independent 
variables, as given in Table 1.

This data set demonstrates many features 
encountered with real data. Most variables are 
to be maximized, but here, three of the 12 vari-
ables would have the minimum as preferable. 
There are negative values associated with the 
data set, as well. 

Variable Training Set
Minimum Value

Training Set
Maximum Value Goal

Total Assets TA 332 421,029 Maximize
Capital Assets CA 107 269,188 Maximize
Interest Expense IE 0 70,938 Minimize
Stability of Earnings INSTAB 34.781 74,672.86 Maximize
Working Capital WC -403,664 169,523 Maximize
Total Current Liabilities CL 33 578,857 Minimize
Total Liabilities TL 33 584,698 Minimize
Retained Earnings RE -486,027 225,719 Maximize
Shareholder Equity SE -430,935 298,903 Maximize
Net Income NI -238,326 97,736 Maximize
Earnings Before Tax and 
Depr. EBITDA -132,388 158,401 Maximize

Cash Flow from 
Operations CF -41,387 95,427 Maximize

Table 1. Independent variables for Canadian banking data set
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TOPSIS MODEL OVER 
TRAINING DATA

Step 1: Data Standardization
The data set was standardized using for-

mulas (1) and (2). 

Step 2: Determine Ideal and Nadir 
Solutions

The ideal solution here is a vector of 
standardized scores of 1: 

{1 1 1 1 1 1 1 1 1 1 1 1}

reflecting the best performance identified in 
the training set for each variable. The nadir 
solution is conversely:

{0 0 0 0 0 0 0 0 0 0 0 0}

All n observations would have a standard-
ized score vector consisting of m (here, m = 12) 
values between 0 and 1.

Step 3: Calculate Weights
Weights were obtained by regressing over 

the standardized data with the outcome of 0 
for default and 1 for no default. Table 2 shows 

the results of that regression (using ordinary 
least squares).

This model had an R-Square value of 
0.287 (adjusted R-Square of 0.235), which was 
relatively weak. Correlation analysis indicated 
a great deal of multicollinearity (demonstrated 
by the many insignificant beta coefficients in 
Table 2), so a trimmed model using the three 
uncorrelated variables of NI, EBITDA, and CF 
was run. This trimmed model had an R-Square 
of 0.245 (adjusted R-Square of 0.232), but the 
predictive capability of this model was much 
weaker than the full model. Multicollinearity 
would be a problem with respect to variable β 
coefficient significance, but since our purpose 
is prediction of the overall model rather than 
interpretation of the contribution of each inde-
pendent variable, this is not a problem in this 
application. Therefore, the full regression model 
was used. Weights obtained in Step 3, therefore, 
are given in the last column of Table 2. How-
ever, these weights should not be interpreted 
as accurate reflections of variable prediction 
importance due to the model’s multicollinear-
ity, which makes these weights unstable, given 
overlapping information content.

Variable Regression
Coefficient βi

P-Value Absolute 
Value of βi

Proportional 
Weight

TA -1.4205 0.926 1.4205 0.103

CA  0.5263 1.000 0.5263 0.038

IE -1.7013 0.043 1.7013 0.123

INSTAB -0.3245 0.453 0.3245 0.023

WC -0.1028 1.000 0.1028 0.007

CL  0.3010 1.000 0.3010 0.022

TL -0.6058 0.977 0.6058 0.044

RE  0.3551 0.477 0.3551 0.026

SE 2.1597 0.935 2.1597 0.156

NI 3.3446 0.051 3.3446 0.242

EBITDA -2.2372 0.084 2.2372 0.162

CF 0.7510 0.056 0.7510 0.054

Totals 13.8298 1.000

Table 2. Standardized data regression
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Step 4: Calculate Distances
Three metrics were used for TOPSIS 

models in this study. For L1 model, the values 
for Di

1+ were obtained by generating by formula 
(3) for each observation over each variable in 
the training set, and Di

1- obtained by formula (4). 
Formulas (5) and (6) were used for L2 model, 
and formulas given in (7) for L∞ model.

Step 5: Calculate Closeness Coefficient
Formula (8) was applied to the distances 

obtained in Step 4 for the training set. 

Step 6: Determine Cutoff Limit for 
Classification

The 177 closeness coefficient values then 
were sorted, obtaining a 17th ranked closeness 
coefficient and an 18th ranked closeness coef-
ficient. For L1 model, these were 0.56197 and 
0.561651. Thus, an L1 cutoff limit of 0.5615 
was obtained for application on test set and for 
classification of future values. For L2 model, 
the corresponding numbers were 0.410995 
and 0.412294, yielding a cutoff limit of 0.411. 
For L∞ model, these numbers were 0.624159 
and 0.624179, and a cutoff limit of 0.62416 
was used.

Step 7: Application of Model
The last step is to apply models to test 

data. Results are given in Section 5.

MODEL COMPARISONS
The original raw data were used with two 

commercial data mining software tools (Poly-
Analyst and See5) for decision tree models. 
PolyAnalyst decision tree model used only 
two variables: NI and WC. The decision tree 
is given in Figure 1.

This model had a 0.865 correct classifica-
tion rate over test set of 126 observations, as 
shown in Table 3.

The errors in this model were a bit more 
proportional in the bad case of assigning actual 
default cases to the predicted on-time payment 
category. However, cost vectors were not used, 
so there was no reason to expect the model 
to reflect this. See5 software yielded the fol-
lowing decision tree, using four independent 
variables.

Table 4 shows the results for the decision 
tree model obtained from See5 software, which 
had a correct classification rate of 0.817, just 
a little worse than the PolyAnalyst model (al-
though this is for specific data and in no way 
is generalizable).

IF NI < 1250 
 AND IF WC < 607 THEN 0 (Neg)
 ELSE IF WC >= 607 THEN 1 (Pos)
ELSE IF NI >= 1250 THEN 1 (Pos)

 

IF NI<1250 

THEN 
Positive 
Outcome 
Predicted 

No 

IF 
WC<607 

Yes 
THEN 
Negative 
Outcome 
Predicted 

Yes 

No 

THEN 
Positive 
Outcome 
Predicted 

Figure 1. PolyAnalyst decision tree
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Finally, TOPSIS models were run. Results 
for L1 model are given in Table 5, with a correct 
classification rate of 0.944.

The results for L2 model are given in Table 
6, with a correct classification rate of 0.921.

The results for L∞ model are given in Table 
7, with a correct classification rate of 0.844. 
Here, all three metrics yield similar results (for 
this data, superior to decision tree models, but 
that is not a generalizable conclusion).

The results for the different models are 
given in Table 8.

These models were applied to one data 
set, demonstrating how TOPSIS principals can 
be applied to data mining classification. In this 
one small (but real) data set for a common data 
mining application, TOPSIS models gave a bet-
ter fit to test data than did two well-respected 
decision tree software models. This does not 
imply that TOPSIS models are better, but it 
provides another tool for classification. TOPSIS 
models are easy to apply in spreadsheets with 
however much data can be fit into a spreadsheet. 

Model 0 (Neg) Model 1 (Pos)
Actual 0 (Neg) 9 2 11
Actual 1 (Pos) 6 109 115

15 111 126

IF NI > 1256 THEN 1 (Pos)
 ELSE IF NI <= -26958 
 AND IF CF > 24812 THEN 1 (Pos)
  ELSE IF CF <= 24812 THEN 0 (Neg)
 IF NI > -26958 AND CA <= 828 THEN 0 (Neg)
  ELSE IF CA > 828 AND IE <= 2326 THEN 1 (Pos)
   ELSE IF IE > 2326 THEN 0 (Neg)

 

IF  
NI > 1256 

No 

Yes 

THEN 
Positive 
Outcome 
Predicted 

IF  
NI ≤ -26958 

Yes IF  
CF > 24812 

THEN 
Positive 
Outcome 
Predicted 

Yes 

No 

THEN 
Negative 
Outcome 
Predicted 

No 

IF  
CA ≤ 828  

Yes 

THEN 
Negative 
Outcome 
Predicted 

IF 
IE > 2326 

No 

Yes 

THEN 
Negative 
Outcome 
Predicted 

No 

THEN 
Positive 
Outcome 
Predicted 

Table 3. Coincidence matrix—PolyAnalyst decision tree

Figure 2. See5 decision tree
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Any number of independent variables could be 
used, limited only by database constraints.

SIMULATION OF 
MODEL RESULTS

Monte Carlo simulation provides a good 
tool to test the effect of input uncertainty over 
output result (Olson & Wu, 2006). Simulation 
was applied in order to examine the sensitivity 
of five models to perturbations in test data. Each 
test data variable value was adjusted by adding 
an adjustment equal to:

Perturbation × Uniform random number 
× Standard normal variate

The perturbations used were 0.25, 0.5, 1, 
and 2. These values reflect increasing noise in the 
data. The adjustments are standard normal vari-
ates with mean 0 and standard deviation found 
in the training data set for that variable. 

Simulation results are shown in Table 9.

The first decision tree model was quite 
robust and, in fact, retained its predictive 
power the most of all five models as perturba-
tions were increased. The second decision tree 
model included more variables and a more 
complex decision tree. However, it not only 
was less accurate without perturbation, but it 
also degenerated much faster than the simple 2 
variable decision tree. While this is not claimed 
as generalizable, it is possible that simpler trees 
could be more robust. (As a counterargument, 
models using more variables may have less reli-
ance on specific variables subjected to noise, so 
this issue merits further exploration.)

The L1 and L2 TOPSIS metrics had less 
degeneration than the four-variable decision tree 
but a little more than the two-variable decision 
tree. The L1 TOPSIS model was less affected 
by perturbations than was the L2 model, which, 
in turn, was quite a bit less affected than was 
the L∞ model. This is to be expected, as the  L1 
model is less affected by outliers, which can 
be generated by noise. The L∞ model focuses 

Model 0 (Neg) Model 1 (Pos)
Actual 0 (Neg) 8 3 11
Actual 1 (Pos) 13 102 115

21 105 126

Model 0 (Neg) Model 1 (Pos)
Actual 0 (Neg) 6 5 11
Actual 1 (Pos) 2 113 115

8 118 126

Model 0 (Neg) Model 1 (Pos)

Actual 0 (Neg) 6 5 11

Actual 1 (Pos) 5 110 115

11 115 126

Table 4. Coincidence matrix (see5 decision tree)

Table 5. Coincidence matrix—TOPSIS L1 model

Table 6. Coincidence matrix—TOPSIS L2 model
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on the worst case, which is a reason for it to be 
adversely impacted by noise in data.

CONCLUSION
TOPSIS is attractive in that it follows 

automatic machine learning principles. TOP-
SIS originally was presented in the context of 
multiple criteria decision making, where the 
relative importance decision maker preference 
was a factor and subjective weights were input. 
In data mining applications presented here, the 
weights are obtained from data, removing the 
subjective element. Weights here reflect how 
much each independent variable contributes to 
the best ordinary least squares fit to data. Data 
standardization removes differences in scale 
across independent variables. Thus, TOPSIS 

models provide a straightforward way in which 
to classify data with any number of independent 
variables and observations.

The classical methods for classification 
and decision trees are valuable tools. Decision 
trees have a useful feature that can provide an 
easy way to interpret rules, as shown in step 
5 of our method. In the spirit of data mining, 
TOPSIS models presented in this article can 
provide an additional tool for comparative 
analysis of data.

We presented three metrics in this article. 
The L2 metric traditionally is used, although L1 
and L∞ metrics are just as valid. The L1 metric 
usually is considered less susceptible to the 
influence of outlier data, as squaring the dis-
tance from the measure of central tendency in 

Model 0 (Neg) Model 1 (Pos)

Actual 0 (Neg) 6 5 11

Actual 1 (Pos) 2 113 115

8 118 126

Model Actual 0 
Model 1

Actual 1 
Model 0

Proportion 
Correct

PolyAnalyst Decision Tree 2 6 0.937
See5 Decision Tree 3 13 0.873
TOPSIS L1 5 2 0.944
TOPSIS L2 5 5 0.921
TOPSIS L∞ 5 2 0.944

Perturbation PADT
Min

PADT
Max

C5
Min

C5
Max

L1
Min

L1
Max

L2
Min

L2
Max

L∞
Min

L∞
Max

0 0.9365 0.9365 0.8730 0.8730 0.9444 0.9444 0.9206 0.9206 0.9444 0.9444

0.25 0.7381 0.9365 0.6746 0.8651 0.7619 0.9286 0.7619 0.9127 0.6825 0.8889

0.50 0.7063 0.9444 0.5952 0.8413 0.7143 0.8968 0.6190 0.8730 0.6349 0.8492

1.0 0.6905 0.8968 0.5317 0.7937 0.6349 0.8492 0.5873 0.8333 0.4683 0.7460

2.0 0.6587 0.8968 0.5238 0.7857 0.5714 0.8175 0.5476 0.7937 0.3810 0.6508

Table 9. Simulation results

Table 7. Coincidence matrix—TOPSIS L∞ model

Table 8. Comparison of model results
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L2 metric has a greater impact. In Tchebycheff 
L∞ metric, the greatest difference determines the 
outcome, which is attractive in some contexts. 
If outliers are not intended to have a greater 
influence, L1 metric might be preferred. If all 
variables are to be considered to the greatest 
degree, L∞ metric is attractive. Here, however, 
we confirm prior results cited and find that L2 
metric seems to perform very well.

Simulation was used to demonstrate 
relative model performance under different 
levels of noise. While simulation of data min-
ing models involves extra computations, it can 
provide insight into how robust those models 
are expected to be.

Nevertheless, future research about TOP-
SIS data mining is suggested. The possible 
direction includes developing new techniques 
that can be compared and contrasted with the 
linear regression approach used in this article 
to derive the weights for independent decision 
variables. 
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