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ABSTRACT 

Consideration of quality implicitly intro- 
duces the need to adjust inputs in order to ob- 
tain desired output. Output evaluation must 
consider quality as well as cost. Real decisions 
may involve other objectives as well. Production 
problems often involve a dynamic situation 
where the relationship between cost and quality 
must be experimentally developed. The pro- 
posed method is to use regression as a means of 
identifying input-output relationships, to in- 
clude variance. A chance constrained multiob- 
jective model can be developed, and decision 
maker preference incorporated through inter- 
active analysis. Through application of the pro- 

posed method, efficient solutions providing as 
much quality as desired at minimum cost are 
capable of identification. 

Past applications in the area are discussed, as 
are data collection, modeling, and solution pro- 
cedures. A number of multiobjective concepts are 
reviewed in light of the chance constrained 
model. Constrained techniques are considered 
more appropriate than weighting techniques for 
this class of problem. The abilities of currentiy 
available solution techniques to support mul- 
tiobjective analysis for this class ofproblems are 
also discussed. 

INTRODUCTION 

Quality has become a paramount issue in 
manufacturing. In order to be competitive, it 
is necessary not only to produce more, but also 
to ensure that products have desired quality. 
Traditional means of treating quality with post 
production sampling are often being replaced 
by methods which are better at incorporating 
quality during the production process. Just-in- 
time manufacturing is an example of this phi- 
losophy. Another means to enhance produc- 
tivity is to design operations in such a way that 
production output has the desired properties. 
Examples of management science support to 
quality in process control are many, including 
Dalal [ 1 ] (steel), Sengupta [ 21 (paper mill), 

and Lee and Olson [ 31 (construction aggre- 
gate). Generally, there will be an implicit need 
for multiobjective analysis to examine the tra- 
deoff between risk (or quality) and product 
cost. Sengupta applied a goal programming ap- 
proach to a paper production process, utilizing 
constraints upon input variables, and optim- 
izing a linear system of statistically derived re- 
lationships between inputs and outputs. Dalal 
utilized simulation for his analysis, comparing 
a number of alternatives generated by the an- 
alyst. Lee and Olson apphed nonlinear goal 
programming to deal with the risk/cost tra- 
deoff. The application of a scientific approach 
to this problem is demonstrated by Derringer 
and Suich [ 41 (rubber compound design), 
where regression was used to determine the re- 
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lationship between inputs and output, and op- 
timization of a weighted four objective func- 
tion was used to design the product. This paper 
presents a technique for approaching product 
design, applying the scientific approach of tak- 
ing experimental results, using regression anal- 
ysis to determine relationships between inputs 
and output, and examining the tradeoffs be- 
tween product consistency and cost. Because 
estimates of the relationship between inputs 
and output quality is by nature probabilistic, 
there is an implicit need to balance multiple 
objectives (cost and risk). Other objectives, 
such as use of particular suppliers, emphasis of 
new materials, and others are also often 
appropriate. 

This paper proposes a general application of 
the scientific method to quality problems. Very 
often, especially with new processes, the rela- 
tionship between inputs and outputs is not 
strictly known. Standard statistical ap- 
proaches can be applied to determine this re- 
lationship. In some cases, sampling would be 
appropriate (blending of materials - Lee and 
Olson [ 31). In that case, sampling informa- 
tion provided all information necessary for the 
design problem. In other applications, it would 
be appropriate to apply regression analysis 
[2,4]. In this case, there well may be covari- 
ante between inputs. Regardless of whether 
sampling or regression is used, experimental 
information can be used as inputs to a mul- 
tiobjective model that would lead to better 
support for quality design. A multiple objec- 
tive model of the quality decision can be made 
incorporating this information obtained from 
sampling statistics or regression. 

The intent of this paper is to present an 
overall framework of analysis for the problem 
of designing quality, using regression or sam- 
pling to determine relationships between in- 
puts and outputs, and multiple objective anal- 
ysis to support the design decision. 
Multiobjective concepts provide an opportu- 
nity to incorporate quality into many produc- 
tion processes and product designs, especially 

product designs involving varying levels of 
process controls or mixtures of materials as 
inputs. 

OBJECTIVES IN QUALITY DESIGN 

A general approach to obtaining quality 
would be to obtain the best materials, obtain 
the best engineering, and apply the best work- 
manship. This approach, of course, results in 
very high cost, and therefore, a very limited 
market. A realistic approach would be to bal- 
ance available materials and design as well as 
possible, and put forth the best effort with 
available workmanship. Product design re- 
quires a decision balancing what is available 
with what the market demands. Minimum cost 
is not an overriding objective, nor is maxi- 
mum quality. But good management seeks to 
obtain as much quality as possible at a reason- 
able cost. Management also requires consider- 
ation of other operational factors. 

Consistency is a factor in quality. Con- 
sumers expect products they buy to perform as 
they expect. The market is a clearing house 
where the demand tradeoff between cost and 
quality should hold - hopefully better quality 
is available at higher cost. If products are in- 
consistent, this detracts from quality to the 
consumer because there is uncertainty as to the 
level of quality being purchased. Therefore, 
quality design is important to producers. There 
should be a market for efJicient products, which 
are appropriately priced for the level of quality 
in the product. 

Producers often have the ability to control 
product consistency. This is one of the key 
concepts behind the idea of just-in-time man- 
ufacturing. Variance in input materials can be 
reduced by relying upon a limited number of 
suppliers, located near the production facility. 
Using such local materials can be another ob- 
jective of the decision maker seeking appropri- 
ate quality. Further, the just-in-time philoso- 
phy increases quality through reduction of 
product variance by having a limited work in 



process inventory. This makes it easier to 
identify production problems, and reduces 
waste before a great deal of damage is done. 

Therefore, product designers have the deci- 
sion of selecting the relative degree of cost and 
quality desired in their product. Minimum 
product cost will not likely provide sufficient 
quality of output. On the other hand, maxi- 
mum quality will probably not have a suffi- 
cient market either. This may not be a simple 
two objective problem, but may involve addi- 
tional objectives as well. 

AN APPROACH TO QUALITY DESIGN 

The relationship between inputs and out- 
puts is often not perfectly understood. Regres- 
sion analysis provides a means of establishing 
this relationship. A scientific approach would 
be to gather data measuring inputs and out- 
puts, and possibly even experimenting to de- 
termine the effect of changing inputs. 

Four applications demonstrate the problem. 
Table 1 presents a recapitulation of the inputs 
used in these four examples, as well as the re- 

TABLE 1 
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sponses desired. The first application was pre- 
sented by Dalal [ 11, where the decision in- 
volved control of a steel hot strip rolling mill. 
Derringer and Suich [ 41 sought to meet four 
quality features for a rubber compound used 
in tire tread through control of the quantity of 
three input materials. Sengupta [ 21 used 
regression to determine linear (goal) pro- 
gramming coefficients (without utilizing vari- 
ance information) in a paper mill application 
seeking better quality output through control 
of process control levels. All three of these ap- 
plications used regression to estimate the rela- 
tionship between inputs and outputs. Another 
example, Lee and Olson [ 3 1, used sampling 
information in an application to mix a variety 
of input materials to meet specifications of 
material size in a construction aggregate 
blending model. While all four applications in- 
volve consideration of quality, and used an ap- 
proach of first identifying relationships, and 
then applying a model to aid the decision lead- 
ing to better quality, they vary significantly in 
how they proceed. Dalal [ 1 ] used simulation, 
relying upon experimental design to generate 

Examples of regression/sampling to identify input/output relationship 

Control variables Response variables 
Objectives 

Dalal [ 1 ] 

Steel hot strip mill 
Simulation 

Finishing temperature 
Gauge of steel 
Speed of mill 
Water pressure 

Coiling temperature 

Derringer and Suich [ 41 Hydrated silica level 
Rubber compound-tire tread Silane coupling agent 
Desirability function Sulfur level 

Abrasion index 
Modulus 
Elongation 
Hardness 

Sengupta [ 2 ] 
Paper mill 
Goal programming model (no variance 
used ) 

Lee and Olson [ 31 
Aggregate mixture-construction 
Chance constrained goal programming 
(sampling information) 

Cooking temperature 
Steam pressure 
Alkali index 
Sulphidity 

Materials of varying quality 

Kamyr digester number 
Burst factor 
Breaking length 

Satisfy gradation limits 
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TABLE 2 

Structuring a multiobjective product design model 

Determine objectives 

Identlfv available alternative inputs 
Inputs= {Process controls and/or Alternative materials; 

Determine relationship between inputs and outputs 
Design experiment 
Gather data 
Regress output versus inputs 

.%ructure model 
Variables 
Constraints 

Objectives 

Multiobjective anal.vsis 

Alternative inputs 
Restrictions upon decision 
Constraints defining objective 

functions can be nonlinear 
Measurable and stated 

Generate solutions to gain reference 
payoff table, or grid of attainment levels 

Interactive generation of improved solutions 
Decision maker assessment in light of 
ALL objectives (stated or not) 

Learning 

Search 
Judgement 

the alternative decisions that were evaluated. 
Further, Dalal had one response variable. The 
other three applications were multiobjective. 
Derringer and Suich [ 41 used a nonlinear de- 
sirability function, which in effect is the appli- 
cation of a weighted scheme to combine the 
value of the four response variables in their de- 
cision. Sengupta [ 2 ] used goal programming 
to aid the decision involving three response 
variables. Lee and Olson [ 3 ] used chance con- 
strained goal programming to combine objec- 
tives of quality, cost, and emphasis of desired 
material use. 

In most business applications, the relation- 
ship between inputs and outputs often in- 
cludes some variance. While averages can and 
often have been (see [ 21) used to estimate im- 
pact between inputs and outputs, variance can 
be an additional important factor in describ- 
ing the measuring quality. That information is 
available from regression analysis in many 
quality control decisions involving production 
processes. Table 2 presents a framework for the 
proposed approach. 

In general, we can use multiobjective con- 

cepts to describe the quality design decision. 
We would expect decision makers to have a 
number of objectives, including cost and some 
measure of quality. There may be other objec- 
tives that are expressed as functions, measur- 
ing objective attainment. Because there may be 
other factors, either not well expressed, or pos- 
sibly not very measurable, interactive multiob- 
jective techniques would be attractive. This 
would allow application of multiobjective 
analysis without requiring decision makers to 
fully express their utility function precisely 
balancing their multiple objectives. 

The information obtained through regres- 
sion analysis can be incorporated into a mul- 
tiobjective model, applying well developed in- 
teractive techniques. The linear programming 
approach is attractive, in that some function 
(cost or quality) can be optimized subject to 
constraints. The tradeoff involved with multi- 
ple objective linear programming analyses has 
been addressed by a number of alternative 
techniques (Evans [ 5 ] ; Rosenthal [ 6 ] ) . Op- 
timizing stochastic processes requires solution 
approaches other than linear programming. 
Chance constrained programming (CCP) has 
been developed to optimize systems subject to 
uncertainty in technological coefficients 
(Charnes and Cooper [ 7 ] ). CCP has been ap- 
plied to many problems where the otherwise 
linear system involved unce~ainty in func- 
tional technological coefficients (Hogan et al. 
[ 81). This is appropriate when there is vari- 
ance in input characteristics and regression 
output or when sampling can be used to deter- 
mine the mean and variance of each input to 
the function. 

Regression constraints 

The general decision problem is one of con- 
trolling the value of a set of input variables (A’,> 
in order to attain appropriate values for one or 
more (vn) response variables ( Y,}. Each Yj is 
assumed to be a function of the set of X, (Ol- 
sonetal. [9]): 



r, =_f(X, ,x, ,...) X,) fori= I,...) m 

If this relationship were known with certainty, 
there was no variance in the relationships, and 
if there was one clear objective function, the 
system could be optimized through linear pro- 
gramming. If the functional relationship was 
nonlinear, variable transformations as used by 
Dalal f I ] or Derringer and Suich [ 4 ] could be 
used. This would yield: 

Max r, (max - k; for a rn~n~rn~zat~o~) 

subject to: Y, =f(X, ,X2,.X,) 

any limits on any X, 

This would be ideal, in that the optimal deci- 
sion (the X values) would be obtained. How- 
ever, many process relationships ( Y=f(x) ) 
are unknown, and involve stochastic proper- 
ties. Sampling data provides a useful means of 
identifying these stochastic relationships: 

r,=J;(X,,X,,...,X,)+e, i=l,..., n, j= l,..., tn 

Each of the m relationships can be identified 
based upon it observations, and while the re- 
lationship is expected to be inexact, inferential 
statistical analyses can be conducted. The er- 
ror terms for relationships based upon large 
samples are often normally distributed with 
mean 0. This results in violation of the linear 
pro~amming assumption of certainty of the 
model coefficients. Chance constrained pro- 
gramming techniques have been developed for 
normally distributed variance of technological 
coefficients in mathematical programming 
models involving linear functions (other than 
the chance constraints). The many applica- 
tions of chance constrained programming in- 
volve stochastic estimates based upon sam- 
pling of input variable properties, where the 
functional relationship between output vari- 
ables (Y,) and input variables (X,) involves 
normally distributed errors from a linear func- 

tion This form of function is often appropri- 
ate where sampling is the basis of determining 
the relationship. This yields a general form: 

Max Y, 

subject to: Y’ =.c( A”, ,X,,...,X,) kz( V) 

Pr{ Y, < bk) 3 a confidence level 

any limits cm X;, 

where z is the normal distribution functional 
and Vis the variance-covariance matrix of the 
input variables A$. Chance constraints operate 
through penalty functions (z( v) ) which pro- 
vide greater than 0.5 probability that the func- 
tional limits will be met. Y, can be replaced with 

where the matrix (V) = [/_?I [ X’X] -I” Chance 
constraints introduce the additional decision 
problem of setting the desired probability level 
of attainment, The decision problem is more 
complex, in that the tradeoff between objec- 
tives, such as cost and quality probability must 
be addressed, However, this provides a more 
comprehensive treatment of the process con- 
troi decision problem. 

The introduction of risk levels makes the de- 
cision problem a tradeoff between cost (or 
profit) and probability of chance constraint 
attainment. While solution of chance con- 
strained models is more involved than linear 
programming models, a number of solution 
techniques have been presented (see solution 
technique references ). When these relation- 
ships are based upon general linear regression, 
there are additional forms of error introduced 
by the estimator of the intercept. 

That is, the general linear model is of the 
form: 

Y’,=p,+P,“Y,+P*,~~2...fe 

The impact of the error in estimation of pa 
modifies the penalty function for chance con- 
straints ( V): 

Chance constrained models can still be applied 
to the optimization model, with the ( V) ele- 
ment including additional information” This 
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can be solved by the same techniques as the 
commonly used chance constrained form, 
through modification of input data (an addi- 
tional X variable, held constant at value 1, is 
included in the model, providing a means to 
input the constant term in the variance covar- 
iance matrix ( V) ). 

Chance constrained model forms 

Consideration of chance constraints intro- 
duces the need to consider probabilistic forms 
as objectives. Charnes and Cooper [ lo] pre- 
sented three formulations to incorporate 
chance constraints into mathematical pro- 
gramming models. One approach would be to 
maximize the expected value of the probabilis- 
tic function (their ‘E’ model): 

Max E [ Y] (where Y=f( X) ) 

Subject to: Pr{Ax< bl > cz 

Any coefficient of this model ( Y, A, b) may be 
probabilistic. The intent of this formulation 
would be to maximize (or minimize) a func- 
tion while assuring (Y probability that a con- 
straint is met. Note that the expected value of 
a function usually involves a linear functional 
form, although the chance constraint will likely 
be nonlinear. This form would be appropriate 
in many blending problems, and many such 
applications have been presented. 

Another form would be to minimize vari- 
ance (‘V’ model): 

Min Var [ Y] 

Subject to: Pr{Axd b) > (Y 

Minimizing variance, as noted before, may 
have some utility in quality control, although 
the intent is usually to accomplish some func- 
tional performance level while satisfying the 
chance constraint set. Incorporating this class 
of objective would be similar to that of incor- 
porating the E model concept. 

The third form of Chames and Cooper would 

be to maximize the probability of satisfying a 
chance constraint set (‘P’ model): 

Max Pr{ Y& target} 

Subject to: Pr{Ax< b} 2 (Y 

This form is generally much more difficult to 
accomplish in a mathematical programming 
analysis, especially if there are joint chance 
constraints. The only practical means to ac- 
complish this would be to run a series of 
models, seeking the highest a level yielding a 
feasible solution. 

Most applications of chance constrained 
models assume normal distributions for model 
coefficients. Goicoechea and Duckstein [ 1 I ] 

presented deterministic equivalents for non- 
normal distributions which can be incorpo- 
rated into chance constrained models. In gen- 
eral, chance constrained models become much 
more dif~cult to analyze if the variance of pa- 
rameter estimates increases. While it is not dif- 
ficult to model a negative exponential distri- 
bution for a model coefficient, the probability 
of satisfying a chance constraint with such dis- 
tributions is much lower. 

Many chance constrained applications also 
assume coefficient independence. This is often 
appropriate. However, the covariance ele- 
ments of coefficient estimates can easily be in- 
corporated as well, eliminating the need to as- 
sume coefficient independence. When 
considering chance constraints developed from 
regression analysis, independence of coeffi- 
cient estimates can be obtained by experimen- 
tal design. However, data must often be ob- 
tained without the means of imposing an ideal 
experimental design plan. Covariance terms of 
regression estimates can be used in chance 
constrained models without difficulty. 

Solution methods for chance constrained 
models 

A number of solution techniques (with 
codes) have been published, Seppala and Or- 
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pana [ 12 ] reported the relative efficiency of 
Seppala’s nonlinear code, which is based upon 
piecewise linear approximation. This code is 
capable of dealing with any size of model suit- 
able for linear programming analysis, and is ef- 
ficient because it focuses break points for the 
piecewise linear approximation as the algo- 
rithm progresses toward solution. Lee and Ol- 
son [ 131 reported a gradient algorithm incor- 
porating preemptive goal programming. By 
setting one preemptive level, and applying 
weights to deviational variables to be mini- 
mized, other forms of multiobjective analysis 
can be applied as well as preemptive goal pro- 
gramming. This code is more limited by model 
size than Seppala’s piecewise linear code. 
Weintraub and Vera [ 141 presented a cutting 
plane chance constrained code which has been 
applied to very large forestry models. Addi- 
tionally, Rees et al. [ 151 presented response 
surface methodology as a means to analyze 
multiobjective nonlinear problems. There also 
exist approximation techniques which could be 
incorporated in linear programming models 
(Hillier [ 16 ] ; Olson and Swenseth [ 17 ] ), al- 
though approximations involve a tradeoff be- 
tween computational effort and accuracy. 

Another approach would be to utilize newly 
marketed nonlinear codes. For instance, 
LINDO has a quadratic programming capabil- 
ity, although the sister product GINO provides 
much stronger nonlinear model support. Other 
mathematical programming packages are also 
being published with very strong nonlinear 
capability. 

MULTIOBJECTIVE CONCEPTS APPLIED 
TO PROBABILISTIC PROGRAMMING 

Key concepts in multiobjective analysis have 
been well developed. A recent review of these 
concepts was provided by Michalowski [ 181. 
A number of problem categories can be iden- 
tified. If well developed knowledge of the 
problem is known, to include a utility func- 
tion, the problem of multiple objectives can be 

dealt with as a well structured mathematical 
model, optimizing utility subject to known 
constraints. However, in practice utility func- 
tions are rarely well developed. An alternative 
approach would be to generate all nondomi- 
nated solutions. In an entirely linear model, this 
is accomplished through identification of non- 
dominated extreme points, realizing that there 
is a nondominated surface connecting these 
extreme points. One difficulty with this ap- 
proach is that there may be a very large num- 
ber of such nondominated solutions. If a priori 
knowledge of decision maker preferences is 
available, the nondominated solution best re- 
flecting this preference structure can be iden- 
tified. There are two well developed ap- 
proaches: use of weights to combine the multiple 
objectives, or using constraints upon objective 
attainment to generate solutions. This can be 
done in aggregate, where the weights imply rel- 
ative importance, or lexicographically. How- 
ever, a priori analysis often assumes more per- 
fect knowledge of decision maker preference 
structure than is merited in practice. At least 
two approaches to support problems where less 
than perfect knowledge of decision maker 
preference structure have been developed. Goal 
programming allows incorporation of aspira- 
tion levels for various objectives through tar- 
get levels, either in a minimization of weighted 
deviations or preemptive form. Compromise 
programming seeks to identify solutions mini- 
mizing some metric from an ideal (but infeas- 
ible) solution. Interactive approaches seek to 
utilize decision maker selection from a subset 
of nondominated solutions to identify the so- 
lution representing the best tradeoff among 
objectives. Interactive approaches allow greater 
support to decision maker learning. A key idea 
in this approach is often the development of a 
payoff table among the various objectives, giv- 
ing a decision maker a reference for relative at- 
tainment on each objective. 

A general formulation of multiobjective 
models would be: 
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Max.&(x) fork= l,..., Kobjectives 

Subject to:f;(x)<:b, for i= I ,...,M constraints 

Weighted methods use the objective function: 

Max C Y&(X) 

Subject to:f;(x) $!I, for required constraints 

C w, = 1 (optional ) 

Preemptive goal programming models have the 
objective function: 

MinP,{w, d, k);...;PA{wkd,+} 

Subjectto:.f;(x)+d,--d,+=h, 

Constraints upon objective attainments can be 
imposed in order to generate nondominated 
solutions. 

Max.c(x) where j is a selected objective 

Subject to: f;( k) <b, for required constraints 

,l;(x) > target for all objectives except objectivej 

In this approach, the targets for constrained 
objectives can be varied as selected by the de- 
cision maker. This operates very much the 
same as the goal programming model. The 
benefit of using constraints upon objectives in 
analyzing multiobjective chance constrained 
models is that a more controlled grid of objec- 
tive function attainment levels can be obtained. 

All of these multiobjective programming 
concepts can be applied to modeling probabi- 
listic constraints. However, there are varying 
complications involved due to the nonlinear 
form of probabilistic constraints. 

Generation of nondominated solutions 

Development of a chance constrained model 
leads to a nonlinear efficient frontier if a non- 
linear constraint is binding in the direction of 
search. This complicates the generation of the 
nondominated set. While the nondominated 
set in an entirely linear model is also liable to 

be infinitely large, each nondominated point 
can be described as a combination of the finite 
set of nondominated extreme points. This is no 
longer true in a nonlinear model. Rakes and 
Reeves [ 19 ] presented a methodology which 
would transform the nonlinear objective into a 
linear form, thus allowing generation of all 
nondominated extreme points. However, in 
general, two problems exist with the idea of 
generating nondominated sets in multiobjec- 
tive chance constrained models. First, trans- 
forming to a linear function may not be con- 
venient or match decision maker style. Second, 
even for linear models, there may be a very 
large number of nondominated extreme points. 
Therefore, in order to provide decision makers 
with a reference of tradeoffs, only a subset of 
the nondominated set will be practical. 

Weights versus constraints 

There are two general approaches used in 
multiobjective programming to generate non- 
dominated solutions. Approaches such as 
Steuer’s Method and the Method of Zionts and 
Wallenius rely upon relative weights for each 
objective function. Other methods, such as the 
Step Method and goal programming, operate 
by generating nondominated solutions through 
bounding objective attainment. While the use 
of the weighted approach is certainly feasible, 
consideration of probabilities is difficult to co- 
ordinate with other objective measures, such 
as profit or cost (Rakes and Franz [ 201). 
Therefore, the weights will have little meaning 
by themselves unless effort is taken to elimi- 
nate differences in scale. Use of bounds upon 
objective function attainment would seem to 
serve a more general purpose. Furthermore, 
considering the difficulty of using the ‘P’ form 
(maximizing probability) as an objective 
function, it is much more practical to measure 
the probability of a constraint being satisfied 
once a solution is obtained than maximizing 
probability directly as an objective. 



interactive approach 

The spirit of decision making under condi- 
tions of multiple objectives is better served by 
interactive approaches, allowing reflection of 
decision maker learning, as well as allowing 
decision makers to judge the relative accom- 
plishments of all objectives. Further, decision 
makers may not be able to express all features 
of the decision that they consider. Therefore, a 
priori approaches may not be appropriate in the 
design problem. 

An interactive approach would better sup- 
port the learning process of the decision maker 
if an initial reference set of feasible objective 
attainment levels were provided. This can be 
accomplished by following the idea of a payoff 
table, as developed in the Step Method. Gen- 
eration of this payoff table in a chance con- 
strained model would be little different from 
the procedure used in linear multiobjective 
models, although it may require additional ef- 
fort to generate solutions maximizing proba- 
bility of attainment. While weighted proce- 
dures can be used, it is easier to control 
attainments that the decision maker may spec- 
ify by use of constraint techniques. 

CONCLUSIONS 

Product quality is a crucial element of con- 
temporary manufacturing. The quality de- 
signed into a product requires consideration of 
multiple objectives. In some product design 
decisions, such as those blending materials, or 
those involving control of some process, a key 
element of quality is the consistency of out- 
puts. The design problem may involve rela- 
tionships between inputs and outputs that are 
unknown. 

A framework for approaching this product 
or process design was presented. It suggests in- 
corporation of an overall scientific approach 
with at least three stages. Stage 1 would be ap- 
plication of the scientific method to experi- 
ment (or use available data) to determine the 
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relationship between inputs and outputs. 
Regression analysis would be a valuable tool to 
support this phase. Stage 2 would be to struc- 
ture the problem into a multiobjective model. 
Elements of this stage include establishing 
measurable objectives, identifying constraints 
to the decision (including incorporating chance 
constraints obtained from regression), and ob- 
taining reference objective attainment levels 
through generation of a representative subset 
of nondominated solutions. The last stage 
would be to apply interactive multiobjective 
analysis to seek a solution useful to the deci- 
sion maker. Interactive analysis is considered 
appropriate, because all objectives may not be 
expressible in measurable terms, and the deci- 
sion maker would be expected to be learning 
from the analysis. 

The complications involved with solution 
algorithms was discussed. Chance constrained 
models require nonlinear programming sup- 
port. This may preclude direct application of 
some multiobjective techniques relying upon 
specialized computer codes. However, general 
concepts can still be applied. Complications 
arise when considering nondominated solu- 
tions, because many multiobjective tech- 
niques rely upon the ability to generate ex- 
treme points, which is more complicated in 
nonlinear models. Further, reliance upon rela- 
tive weights for each objective is complicated, 
due to the potentially high relative impact of 
minor changes in weights. Use of constraints 
to control identi~cation of objective tradeoffs 
is recommended for chance constrained mul- 
tiobjective models. 
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