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Vendor selection involves decisions balancing a number of conflicting criteria.
Data envelopment analysis (DEA) is a mathematical programming approach
capable of identifying non-dominated solutions, as well as assessing relative
efficiency of dominated solutions. A simple multi-attribute utility function can be
applied to a small set of alternatives, providing a tool to assess relative value, but
is subject to error if estimated measures are not precise. This paper compares
stochastic DEA with a multiple-criteria model in a vendor selection model
involving multiple criteria, reporting simulation experiments varying the degree of
uncertainty involved in model parameters.
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1. Introduction

Vendor evaluation is a very important operational decision. Important decisions

include which vendors to employ and quantities to order from each vendor. With the
increase in outsourcing and the opportunities provided by electronic business to tap

worldwide markets, these decisions are becoming ever more complex. The presence

of multiple criteria in these decisions has long been recognized. Dickson (1996)
identified 23 distinct criteria in various vendor selection problems. Weber et al.

(1991) found multiple criteria in 47 of the 76 vendor selection articles that they

reviewed. Table 1 compares criteria used in 12 studies over the period 1996 through
2006 with the top row containing the number of the 76 articles Weber et al. reviewed

that included the same criteria. Price, quality, and response have become endemic.
In the past, more emphasis seems to have been placed on managerial and

organizational reputation, expertise, and attitude. Some criteria continue to have
moderate presence, such as the availability of adequate facilities, technological

innovation, and the ability to provide service. More recent articles place an increased

emphasis on flexibility and agility, probably reflecting the increased use of
e-commerce, rapid delivery, and more responsive delivery.
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Vendor selection decisions often require tradeoffs among a number of criteria.

Furthermore, data on specific vendor performance is imprecise of necessity. Some

studies (Kulak and Kahraman 2005, Chang et al. 2006a) have recognized this

imprecision through methods accommodating fuzzy data, but most methods fail to

consider uncertainty. Therefore, we compare existing stochastic dominance with

stochastic data envelopment analysis (DEA).
Stochastic dominance analysis has been presented in the past. This paper applies

simulation to provide a more tractable solution approach with the ability to give

more detail in a straightforward manner than stochastic dominance analysis. Thus

we are not presenting a new stochastic dominance model, but rather use simulation

as a way to implement one reported in the literature. These results are compared with

DEA. Our purpose is not to compare stochastic dominance models, but rather to

demonstrate how DEA models compare. Section 2 of the paper reviews vendor

selection methodologies. Section 3 gives the vendor selection model used, with

results. Section 4 compares results, and section 5 provides conclusions.

Table 1. Criteria used in prior studies.

Criteria C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15

Weber et al. (1991) – 74 prior 61 40 44 7 23 15 2 7 10 7 8
Patton (1996) x x x x x x
Petroni and Braglia (2000) x x x x x x
Tam and Tummala (2001) 6 x x 9 x 2
Chan (2003) x x x x x
Wang et al. (2004) 3 4 3 2
Zhu (2004) 3 x 2 2 x
Liu and Hai (2005) x 2 2 3 2 2 2
Ounnar and Pujo (2005) x x x x x x x X x
Tseng and Lin (2005) x x x x
Kulak and Kahraman (2005) x x x x x
Chang et al. (2006b) x x x x x
Talluri et al. (2006) x x x

C1 Price/cost
C2 Acceptance/quality
C3 On-time response/logistics
C4 Service
C5 Production facilities/assets
C6 R&E in technology/innovation/design capability
C7 Flexibility/agility.
C8 Documentation
C9 Communication
C10 Performance
C11 Strategic
C12 Discipline
C13 Management and organization
C14 Financial
C15 Expertise/reputation.
X – indicates presence.
Numbers indicate the number of specific criteria in this general area.
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2. Vendor selection methodologies

Many methods have been proposed to aid vendor selection. Talluri et al. (2006) listed
no fewer than 14 different methodologies over the period 1969 through 2003
(including multiple-criteria methods and DEA). Kulak and Kahraman (2005) came
up with a different categorization of five methods: profile and checklist methods,
scoring methods, cost-benefit analysis, mathematical programming, and fuzzy
analysis. DEA models have been presented by Kleinsorge et al. (1992), Weber and
Desai (1996), Weber et al. (1998), Liu et al. (2000), Narasimhan et al. (2001), and
Talluri (2002).

2.1 Vendor selection procedure

The stochastic DEA and stochastic dominance model applied through simulation are
used to measure vendor efficiency. The model aims to maximize the efficiency of
vendor subject to attaining desired quality, price, performance, facilities/capabilities
levels. In our stochastic DEA model, all the attributes are deemed as outputs since
they are normalized as in Moskowitz et al. (2000). The process is to (1) identify
criteria; (2) identify alternative vendors; (3) select measures; and (4) use a model to
rank-order vendors. Our focus will be on measures that are as objective as possible,
to include uncertain elements. Alternative models considered in this paper are
stochastic dominance, simulation, and stochastic DEA.

2.2 Stochastic vendor selection

Moskowitz et al. (2000) gave a multiple criteria vendor evaluation model consisting
of the hierarchical structure given in table 2.

The overall categories are quality, price, performance, and facilities/capabilities.
Each of these four categories has two to four criteria reflecting the performance of
various vendors that were available. In the Moskowitz et al. case, there were nine

Table 2. Criteria hierarchy (Moskowitz et al. 2000).

Overall Primary categories Criteria

Vendor evaluation Quality 1. Quality personnel
2. Quality procedure
3. Concern for quality
4. Company history

Price 5. Price of Quality
6. Actual price (negotiated or quoted)
7. Financial ability

Performance 8. Technical
9. Delivery history
10. Technical assistance

Facilities/capabilities 11. Production capability
12. Manufacturing equipment

A comparison of stochastic dominance & DEA 2315
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vendors, for which relative performance scores were available. Table 3 gives means

(and standard deviations) for each score.
Stochastic dominance assumes correlated variance. Moskowitz et al. (2000)

considered two sets of weights on criteria. Random weights yielded four alternatives

as first-order stochastically non-dominated (V2, V4, V6, and V8) in their study.

Moskowitz et al. then applied ordinal weights, using the order of importance as:

W2 >W1 >W3 >W4 >W5 >W6 >W7 >W10 >W8 >W9 >W11 >W12

This represents one possible order that decision-makers might express in light of

their preferences. This set of ordinal weights yielded rank orders V2 dominating V8,

which dominated the other seven alternatives. Thus more knowledge about

weights can yield more complete rankings of alternatives. However, even greater

clarity might be obtainable through use of alternate methods, such as DEA

or simulation.

3. Multi-criteria model with simulation

Simulation of multiple criteria models is now easily accomplished, using such tools as

crystal ball, which supports spreadsheets such as EXCEL (Evans and Olson 2005).

Simulation can replicate the results of stochastic dominance by assuming a set of

weights with ranges and order as specified. Selection is identified by calculating the

simulated value function for each of the nine vendors, with the highest value function

selected. If enough simulation runs are made, it can reflect any complexities that

might be present in a model. Simulation has been applied in fuzzy data mining

models (Olson and Wu 2006). The simple multi-attribute rating theory (SMART -

Edwards and Barron 1994) model simply bases selection on the rank order of the

product of criteria weights and alternative scores over these criteria. The data given

in table 2 can directly be applied in a Crystal Ball model. Using random weights and

controlling for random scores (so that equal luck is given to each alternative over

each criterion), stochastically non-dominated solutions are the only ones with the

possibility of having the greatest score. This in fact was attained in our model. The

ordinal weights suggested by Moskowitz et al. (2000) were also applied. Table 4 gives

the proportion of 1000 simulation runs, yielding probabilities of each alternative

being preferred.
The equal weight model confirmed the stochastic dominance results (we got the

same thing that Moskowitz et al. got). However, the simulated multi-attribute model

yields more information, showing the probabilities of each alternative vendor being

preferred for the data given. Adding more information about relative weights will

provide yet more information, as it should. Here, the most probable selection under

conditions of random weights with equal probabilities was never selected, as the

weights associated with this vendor’s strengths were given relatively low importance.

While Moskowitz et al. identified V2 and V6, table 4 shows through

simulation results that V4 was also non-dominated with this set of ordinal weights.

Vendor alternative V2 turned out to be the most probable best choice for the ordinal

weights given.
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4. DEA analysis

Charnes et al. (1978) first introduced DEA (CCR) for efficiency analysis of Decision-

making Units (DMU). DEA can be used for modeling operational processes, and its

empirical orientation and absence of a priori assumptions have resulted in its use in a

number of studies involving efficient frontier estimation in both nonprofit and in

private sectors. DEA has become a leading approach for efficiency analysis in many

fields, such as supply chain management (Ross and Droge 2002), business research

and development (Verma and Sinha 2002), petroleum distribution system design

(Ross and Droge 2004), military logistics (Sun 2004), and government services

(Narasimhan et al. 2005). DEA and multi-criteria decision-making models have been

compared and extended (Lahdelma and Salminen 2006). Section 4.1 develops

stochastic DEA vendor evaluation model since stochastic DEA takes into account

the risk and uncertainty embedded in the business environment.

4.1 Stochastic DEA mathematical formulation

Stochastic DEA constructs production frontiers that incorporate both inefficiency

and stochastic error. The stochastic DEA frontier associates extreme outliers with

the stochastic error term and this has the effect of moving the frontier closer to the

bulk of the producing units. As a result, the measured technical efficiency of every

DMU is raised relative to the deterministic model. In some realizations, some DMUs

will have a super-efficiency larger than unity (Olesen and Petersen 1995, Cooper et al.

1996, Cooper et al. 2002).
Now we consider the stochastic vendor selection model. Consider N suppliers to

be evaluated; each has s random variables. Note that all input variables are

transformed to output variables, as was done in Moskowitz et al. (2000). Classical

DEA does not apply in our case since it asks for a classification of attributes into

input and output variables and we only have transformed ‘‘output variables.’’ The

variables of supplier j ( j¼ 1, 2, . . . ,N) exhibit random behavior represented by
~yj¼ ð ~y1j, . . . , ~ysjÞ, where each ~yrj(r ¼ 1, 2, . . . , s) has a known probability distribution.

By maximizing the expected efficiency of a vendor under evaluation, the following

model (1) is developed.

max
v

EðvT ~y0Þ

s:t: PrðvT ~yj � �jÞ � 1� �j, j ¼ 1, 2 � � �N

v � 0

ð1Þ

Table 4. Weights obtained from simulation.

V1 V2 V3 V4 V5 V6 V7 V8 V9

Equal weights 0 0.03 0 0.08 0 0.36 0 0.53 0
Ordinal weights 0 0.71 0 0.22 0 0.07 0 0 0
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In (1), E refers to the expectation and Pr stands for probability. The first

inequality constraint in (1) indicates that the efficiency score of supplier j is less than

or equal to �j, which represents the expected efficiency level of the jth supplier and is

thus a prescribed value between 0 and 1. The v represents the virtual multipliers

(weights) to be determined by solving the above problem and ~y0 is the random

output vector for the N vendors. The objective expected efficiency of (1) is

interpreted as an ‘‘aspiration level’’ imposed by an outside authority and/or a

budgetary limitation (Stedry 1962). The �j (0��j� 1) in the constraints are

predetermined scalars which stand for an allowable risk of violating the associated

constraints, where 1��j indicates the probability of attaining the requirement. When

�j¼ 0 in (1), it is certainly required that the output/input ratio becomes less than or

equal to �j Conversely, �j¼ 1 omits the requirement under any selection of weight

multipliers. Note that our stochastic DEA model only considers a sort of output

data, which differs from classical stochastic DEA where both input and output

variables are considered. Thus computational complexity can be reduced.
To transform the stochastic DEA model (1) into a deterministic DEA, Charnes

and Cooper (1959) (also see Huang and Li 2001) employed chance constrained

programming (CCP, Charnes et al. 1958). The transformation steps presented in this

study follow this technique and can be considered as a special case of their stochastic

DEA (Cooper et al. 1999), where both stochastic inputs and outputs are used.
To proceed, we rewrite the 2nd constraints in model (1) as:

Pr
vTð ~yj � �yjÞffiffiffiffiffiffiffiffiffi

Varj
p �

�j � vT �yjffiffiffiffiffiffiffiffiffi
Varj

p
 !

� 1� �j ð2Þ

where Varj¼ (v1, v2 . . . vs)�

Varð ~y1jÞ ð ~y1j, ~y2jÞ, . . . , Covð ~y1j, ~ysjÞ

Covð ~y2j, ~y1jÞ Varð ~y2jÞ, . . . , Covð ~y2j, ~ysjÞ

..

. . .
. ..

.

Covð ~ysj, ~y1jÞ, . . . . . . , Varð ~ysjÞ

0
BBBB@

1
CCCCA� ðv1, v2 . . . vsÞT

Here Varj indicates the variance-covariance matrix of the jth supplier in which

the symbol ‘‘Var’’ stands for a variance and the symbol ‘‘Cov’’ refers to a covariance

operator.
By CCP, a new variable following the standard normal distribution with zero

mean and unit variance could be introduced as follows:

~zj ¼
vTð ~yj � �yjÞffiffiffiffiffiffiffiffiffi

Varj
p , j ¼ 1, . . . ,N: ð3Þ

Substitute expressions in (2) with (3):

Pr ~zj �
�j � vT �yjffiffiffiffiffiffiffiffiffi

Varj
p

 !
� 1� �j ð4Þ
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After a simple transformation we have (5) as:

�j � vT �yjffiffiffiffiffiffiffiffiffi
Varj

p � ��1ð1� �jÞ, j ¼ 1, . . . ,N: ð5Þ

where � stands for a cumulative distribution function of the normal distribution and

��1 indicates its inverse function. This completes the transformation of the

probabilistic version of the linear output constraint into a deterministic non-linear

form using what Charnes and Cooper (1959) refer to as a modified certainty

equivalent.
Based on (5), model (1) can be written as the following (6):

max
v

EðvT ~y0Þ

s:t: �j � vT �yj �
ffiffiffiffiffiffiffiffiffi
Varj

p
��1ð1� �jÞ

v � 0

ð6Þ

This is a non-linear programming problem in the variables v, which faces

computational difficulties due to the objective function and the constraints, including

the variance
ffiffiffiffiffiffiffiffiffi
Varj

p
, with quadratic expressions. To further reduce the model (6), we

assume that ~yj follows a normal distribution N( �yj, Bj), where �yj is its vector of

expected value and Bj indicates the variance-covariance matrix of the jth DMU by

the following formula.

Bj ¼

jb211
jb212, . . . , jb21s

jb221
jb222, . . . , jb22s

..

. . .
. ..

.

jb2s1, . . . . . . , jb2ss

0
BBBB@

1
CCCCA ð7Þ

jb2rt (i, t¼ 1, 2, . . . , s) denotes the variance value of ~yrj if r¼ t and its covariance value

if r 6¼ t of the jth DMU. In this case, we have

Varj ¼ ðv1, v2, . . . , vsÞ �

jb211
jb212, . . . , jb21s

jb221
jb222, . . . , jb22s

..

. . .
. ..

.

jb2s1, . . . . . . , jb2ss

0
BBBB@

1
CCCCA� ðv1, v2, . . . , vsÞ

T
¼

X
vjrbrr

 !2

ðr ¼ 1, . . . , s; j ¼ 1, . . . ,NÞ ð8Þ

Then model (8) can be reformulated as the following equivalent linear

programming.

max
v

vT �y0 ð9:1Þ

s:t: �j � vT �yj � vTbj�
�1ð1� �jÞ, j ¼ 1, . . . ,N ð9:2Þ

vT � 0 ð9:3Þ
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where bj¼ ð
jb2rrÞs�1 is a s-dimension vector and y0 in the objective function denotes

the mean output value of the 0th supplier (02 [1, . . . ,N]).

4.2 Stochastic DEA result

With data in table 3, we run model (9) by choosing different combinations of
parameter �j¼� and �j¼ � for all j¼ 1, . . . ,N. Thus there are two parameters that
are not part of the given data set: � and �. We run the DEA model given in with
various values for these parameters to see the sensitivity of the results. DEA
stochastic efficiency scores of the nine vendors are obtained by running model (13)
with different combinations between �2 {0.05, 0.1, 0.2} and �2 {0.85, 0.9}. The
stochastic DEA model is solved nine times, each for one of the alternatives under
evaluation. The formulation to compute the efficiency �1 for the first vendor is:

Max �1 ¼ 85v1 þ 80v2 þ 80v3 þ 90v4 þ 90v5 þ 73v6 þ 85v7

þ 70v8 þ 80v9 þ 55v10 þ 85v11 þ 70v12

Subject to: constraint for all vendor j from 1 to 9

vi ¼ 0 for all i from 1 to 12

vi is defined in model (1) and denote the weight attached to the ith attribute. For
j¼ 2, the constraint is specifically expressed as:

vTðb2�
�1ð1� �Þ þ �y2Þ � �:

Specifically,

ð82þ 4:2 ���1ð1� 0:2ÞÞv1 þ ð88þ 4:2 ���1ð1� 0:2ÞÞv2

þ ð83þ 5:5 ���1ð1� 0:2ÞÞv3 þ ð88þ 4:5 ���1ð1� 0:2ÞÞv4

þ ð88þ 5:1 ���1ð1� 0:2ÞÞv5 þ ð78þ 6:4 ���1ð1� 0:2ÞÞv6

þ ð92þ 4:8 ���1ð1� 0:2ÞÞv7 þ ð80þ 5:0 ���1ð1� 0:2ÞÞv8

þ ð75þ 5:5 ���1ð1� 0:2ÞÞv9 þ ð55þ 5:1 ���1ð1� 0:2ÞÞv10

þ ð80þ 6:6 ���1ð1� 0:2ÞÞv11 þ ð83þ 4:7 ���1ð1� 0:2ÞÞv12 � 0:9

Table 5. Relative efficiency from stochastic DEA.

V1 V2 V3 V4 V5 V6 V7 V8 V9 Average

V1 95.40 94.33 93.58 94.62 75.11 95.33 95.16 94.32 89.72 91.95
V2 93.56 95.60 94.63 95.02 79.37 93.93 94.53 92.15 90.02 92.09
V3 94.98 85.17 95.37 92.27 94.83 88.55 92.96 94.71 92.25 92.34
V4 89.61 90.28 95.93 98.11 89.23 93.88 94.32 97.45 94.88 93.74
V5 85.86 83.01 91.04 95.63 98.10 83.64 88.80 91.08 86.16 89.26
V6 92.69 92.87 92.84 92.11 92.32 93.47 93.29 88.46 92.86 92.32
V7 90.69 93.21 93.87 93.37 92.97 91.37 93.96 93.17 91.24 92.65
V8 94.93 94.40 96.30 94.66 86.37 94.29 94.15 96.64 95.97 94.19
V9 93.06 92.88 93.55 92.94 92.82 93.76 93.65 93.22 93.78 93.30
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Efficiency value increases as the value of � goes up and the value of � decreases.

This systematic trend is consistent with that in Sueyoshi (2000). Following Sueyoshi

(2000), we fix �¼ 0.2 and �¼ 0.9 for the rest of the paper. Moskowitz et al. (2000)

assumed two types of weights: random weights and ordinal weights. To take into

account these weight differences, we run our stochastic DEA in two cases: normal

DEA in model (9) and model (9) coupled with weight restriction as identified in

section 2.2, i.e. the following model (10).

max
v

vT �y0

s:t: vT in ð9:2Þ and ð9:3Þ

vT in Moskowitz et al: ð2000Þ:

ð10Þ

Table 5 documents the stochastic efficiency for each vendor with parameter

�¼ 0.2, �¼ 0.9 and without restricting the weight, while table 6 documents the

stochastic efficiency for each vendor by running stochastic DEA with restricted

weight. Note that in tables 5 and 6 we also provide the cross efficiency for each

vendor. The cross efficiency of the kth vendor is defined as the efficiency calculated

using the weight optimized for another vendor j (Sexton et al. 1986). For example,

after computing the stochastic efficiency for the first vendor, we obtain the optimal

stochastic efficiency 0.954 and optimal weight vector

ð0:0004, 0, 0, 0:0050, 0:0040, 0, 0, 0, 0, 0:00194, 0, 0Þ:

The cross efficiency of the second vendor is computed as 0.0004*82þ

0*88þ 0*83þ 0.005*88þ 0.004*88þ 0*78þ 0*92þ 0*80þ 0*75þ 0.00194*55þ

0*80þ 0*83¼ 93.56%, as documented in the cell of the third row and the second

column in table 5. The cross efficiency can be deemed as an efficiency evaluation for

alternative under-evaluation from the perspective of other alternatives, i.e. cross

evaluation. The average of the cross efficiencies and DEA efficiency integrates self-

evaluated score and cross-evaluated score (following Doyle and Green 1993) and

thus provides another way to determine the non-dominated alternative(s). For

example, in table 5, V8 is the maximum in columns V3 and V9, indicating that V8 is

identified as most efficient by V3 and V9; similarly, V1 is the maximum in both

columns V6 and V7; V4 is the maximum in column V8. This means that V1 and V4

Table 6. Relative efficiency from stochastic DEA.

V1 V2 V3 V4 V5 V6 V7 V8 V9 Average

V1 93.43 92.88 92.68 86.98 91.41 91.40 92.13 90.72 92.65 91.59
V2 94.79 94.90 94.79 93.81 94.58 94.58 94.64 94.62 94.78 94.25
V3 92.68 91.92 94.59 92.37 93.58 94.52 94.02 92.71 91.90 93.32
V4 90.00 90.93 91.29 94.99 90.60 90.81 92.16 92.52 91.28 91.99
V5 90.93 91.69 92.92 84.04 95.00 94.94 93.88 91.48 92.88 92.10
V6 92.33 92.38 92.32 87.18 92.26 92.29 92.33 92.21 92.40 91.72
V7 91.38 92.31 93.17 89.62 92.83 93.25 93.60 91.37 92.16 92.23
V8 94.71 94.65 93.64 93.68 92.80 92.23 92.96 95.12 94.53 93.54
V9 92.36 92.72 91.43 83.52 91.10 90.59 91.00 91.13 92.80 90.87
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also have potential to be termed as non-dominated alternatives based on a cross-

evaluation scheme. Below we will consider both the stochastic DEA efficiency and

average stochastic cross efficiency.
In tables 5 and 6, stochastic efficiency for each vendor by solving nine linear

programs is highlighted in bold. The last column shows the average stochastic cross

efficiencies. Without restricting the weights, V4 is identified as the most preferred

vendor with a stochastic efficiency of 0.9811 at the aspiration level of 0.9 (�¼ 0.9)

and a twenty percent allowable chance (risk, �¼ 0.2) of failing to satisfy the

constraint with which it is associated.
The ranking orders are as follows:
Stochastic efficiency without weight restriction using the diagonal:

V4 � V5 � V8 � V2 >� V1 � V3 � V7 � V9 � V6

where the symbol ‘‘�’’ denotes ‘‘is superior to.’’
Stochastic cross efficiency without weight restriction using averages:

V8 � V4 � V9 � V7 � V3 � V6 � V2 � V1 � V5

From table 6, we can see that the ranking orders are:
Stochastic efficiency with weight restriction:

V8 � V5 � V4 � V2 � V3 � V7 � V1 � V6 � V9

Stochastic cross efficiency with weight restriction:

V2 � V8 � V3 � V7 � V5 � V4 � V6 � V1 � V9

As can be expected, different approaches identify different non-dominated

vendor. The same problem occurs in Moskowitz et al. (2000) where they identified

completely different non-dominated vendors by using random weight assumption

and ordinal weight assumption. Under assumption of random weights, Moskowitz

et al. (2000) identified V6 and V8 as non-dominated vendors. The first order

dominated vendors are V1, V3, V4, V7, V9.

Table 7. DEA results for each variable.

CCR
without weight

restriction

Super CCR
without weight

restriction

CCR with
weight

restriction

Super CCR
with weight
restriction

V1 1.000 1.057 0.991 0.991
V2 1.000 1.060 1.000 1.034
V3 1.000 1.108 1.000 1.020
V4 1.000 1.087 1.000 1.013
V5 1.000 1.143 1.000 1.008
V6 1.000 1.109 0.999 0.999
V7 1.000 1.062 1.000 1.000
V8 1.000 1.074 1.000 1.017
V9 1.000 1.042 0.989 0.989
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Under assumption of ordinal weights, Moskowitz et al. (2000) selected V2 as the

non-dominated alternative. Moskowitz et al. (2000) argued that this ‘‘expected’’

difference is because different approaches, different model assumptions and different

criteria for filtering inferior alternatives were employed.
Even though there is some difference between these approaches, we do come up

with many consistent solutions. First, our stochastic DEA either term V2 or V4 or

V8 as most efficiency alternative, which is consistent with our simulation result in

section 3 since simulation indicates V2, V4, V6 and V8, all have potential to be

selected as non-dominated vendor. Second, our stochastic DEA models as well as the

classical DEA in table 7 agree that V1, V7, V9 are frequently been filtered due to

their poor performance represented in efficiency value. This verifies the strong

diagnosing power in identifying the worst cases.
In order to compare our stochastic DEA result with classical DEA, we employ

four classical DEA models to compute DEA efficiency without considering the

variation in data, i.e. we only consider means in table 3. Table 7 presents the

computed efficiencies using these four models: CCR without weight restriction, super

CCR without weight restriction, CCR with weight restriction and super CCR with

weight restriction. The super efficiency (SE) DEA model obtains individual reference

functions for the efficient observations by removing the constraint related to the unit

being evaluated from classical CCR model. In this way, DEA efficiency of the

efficient DMUs is allowed to be greater than unity so that the discrimination area is

expanded and the discrimination power is thus improved. Note, however, that the

results for the standard model can always be recovered from the SE scores by setting

all scores greater than one to unity. Andersen and Petersen (1993) provide more

information about the SE DEA model.
Results from table 7 for the worst case are that vendor alternatives {V1, V6, V9}

are identified as inferior by CCR with weight restriction and super CCR with weight

restriction. For super CCR without weight restriction a complete ranking is obtained

as follows:

V5 � V6 � V3 � V4 � V8 � V7 � V2 � V1 � V9

The complete ranking provided by super CCR with weight restriction is different:

V2 � V3 � V8 � V4 � V5 � V7 � V6 � V1 � V9

Actual non-dominated alternatives are the set {V2, V4, V6, V8}. By

non-dominated, we mean that there is a set of weights that would yield this option

as preferred over all others. This implies that those that are dominated should never

be selected by any set of weights (so super CCR without weight restriction fails, and

CCR with weight restriction fails).
Note that although two of these four DEA models do provide a ranking order for

all vendors, we do not recommend them for decision-making since they fail to

consider the data variation or uncertainty embedded in the problem. To be specific,

the restricted super CCR model never takes the standard deviation of the data into

consideration in the computation process. This nature makes its inappropriate in our

case. On the contrary, stochastic DEA provides a good tool to perform efficiency
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analysis by incorporating both inefficiency and stochastic error. Stochastic DEA also
allows much flexibility for decision-makers to selected preferred vendors by use of
the aspiration level and an allowable chance (risk) of failing to satisfy the constraint
with which it is associated.

5. Conclusions

Vendor selection in supply chains by its nature involves the need to trade off multiple
criteria, as well as the presence of uncertain data. When these conditions exist,
stochastic dominance can be applied if the uncertain data are normally distributed.
If not normally distributed, simulation modeling applies (and can also be applied
if data is normally distributed).

DEA has been offered as an alternative approach. We have compared different
stochastic versions of DEA. DEA can help to improve a performance measurement
system in supply chain management. When the data is presented with uncertainty,
stochastic DEA provides a good tool to perform efficiency analysis by handling both
inefficiency and stochastic error. To employ the stochastic DEA vendor selection
model, decision-makers are comfortable in choosing the aspiration level and an
allowable chance (risk) of failing to satisfy the constraint with which it is associated.
Models are insensible to different combinations of the aspiration level � and the
allowable chance (risk) of failing to satisfy the constraint �.

Our preference is for simulation analysis, due to its flexibility in being able to
cope with a variety of data distributions. Combined with SMART multi-criteria
models, simulation can be the basis for complete ranking of alternatives, given
decision-maker input of preference data.
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