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A stochastic fuzzy multi-objective programming model is developed for supply chain out-
sourcing risk management in presence of both random uncertainty and fuzzy uncertainty.
Utility theory is proposed to treat stochastic data and fuzzy set theory is used to handle
fuzzy data. An algorithm is designed to solve the proposed integrated model. The new
model is solved using the proposed algorithm for a three stage supply chain example. Com-
putation suggests an analysis of risk averse and procurement behavior, which indicates
that a more risk-averse customer prefers to order less under uncertainty and risk. Trade-
off game analysis yields supported points on the trade-off curve, which can help decision
makers to identify proper weighting scheme where Pareto optimum is achieved to select
preferred suppliers.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Supply chain (SC) risk management has attracted considerable and increasing attention in both industry and academia, as
their activities and requirements become increasingly complex [25,68]. This is especially true when the companies are
expanding the geographical scope of their sourcing activities into areas where they have little experience as low cost country
sourcing, e.g., China [81].

Outsourcing is a recent trend, usually adopted to gain lower production costs, but also can be used to reduce core orga-
nizational risk. In a global market, supply management offshore-sourcing strategies can include manufacturers at low cost
locations such as China, India, or Vietnam, assemblers at high-tech operations in Taiwan and Korea, and distributors where
customers reside all over the globe. They can also include e-business operations such as Amazon.com. The selection of sup-
pliers in a global market is often considered as a problem involving complex systems. This has been severe under the supply
chain management framework, because the factors such as default risk from other SC members and the effects to SC partners
need to be considered. On the other hand, external stakeholders such as rating agencies affect the selection of appropriate
suppliers by assigning independent, objective and non-binding opinions (not recommendations) on the financial strength of
outsourcing candidates in the form of a globally consistent rating scale. The credit rating process historically includes busi-
ness and financial risks of an organization in addition to indicators of macroeconomic conditions [3]. External credit ratings
are thus particularly important in financial services because a higher credit rating establishes and maintains market
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confidence. All these indicate that factors causing SC risks, their relation and the possible effects of these risks can be very
complex, making practical supply risk management in industry a difficult undertaking [36].

Since supplier selection activities under supply chain management framework are complex, a supplier selection approach
must be able to take this complexity into account. Many models are available to support supplier selection and outsourcing.
Ref. [42] modeled supplier risk attitude with respect to risk aversion. Some studies [2,10,37] have recognized this impreci-
sion through methods accommodating fuzzy data. But these methods fail to consider uncertainty and risk factors in an inte-
grated model. Probability distributions from historical data are widely recognized by researchers [13,15,24,28,29,41,65,69]
to model SC uncertainty (e.g., uncertain demand) in a decision model. However, because one single criteria such as the min-
imization of expected cost or maximization of expected profit is used, these decision models may result in sub-optimal solu-
tions. A practical decision of selecting SC partners and sourcing arrangements usually exhibits as a multi-objective decision
making problem [49], where multi-objective programming models have been presented [76,77]. But existing multi-objective
programming seldom simultaneously considers multiple objective and uncertainty and risk.

In this paper, a stochastic fuzzy multi-objective programming model (SFMOP) vendor selection model is developed for
supply chains outsourcing risk management. We recognize that data regarding the expected performance of suppliers in
a global market are necessarily imprecise. Moreover, selecting an ideal supplier is much riskier than its domestic counterpart
due to a number of exogenous risk factors influencing offshore sourcing. Therefore, both quantitative and qualitative sup-
plier selection risk factors are examined. Quantitative risk factors include cost, quality and logistics, each expressed with sto-
chastic data with some probability distribution. Qualitative risk factors include economic environmental factors and vendor
ratings, which are of a fuzzy nature and can be quantified by a degree of belief (e.g. membership function).

We model a SC consisting of three levels and use an example with simulated data extracted from our previous study. We
conduct various analyses, to include sensitivity analysis on certain confidence of level (a-cut-level), simulation on weight,
trade-off game analysis and two-way comparison between the proposed model and the model with three-objective case
(see Section 3 for both three-objective and five-objective cases).

The rest of the paper is organized as follows. Section 2 presents literature review. Section 3 presents stochastic fuzzy mul-
ti-objective programming models. Section 4 discusses our solution approach. Section 5 gives numerical illustration analysis,
and Section 6 concludes the paper.

2. Literature review

We review three streams of literature that are relevant for this paper. The first stream is the widely studied research on
supplier selection or outsourcing, where research can be dated back to the early 1960s [20]. Supply management in SCs seeks
the participation of good suppliers providing low cost and high quality. Selection of SC partners is an important decision
involving many important factors. Supplier selection by its nature involves the need to trade off multiple criteria, to include
both tangible and intangible information. [20] identified 23 distinct criteria in various supplier selection problems. [76]
found multiple criteria in 47 of the 76 supplier selection articles that they reviewed. [12] applied 4 methods to evaluate po-
tential suppliers based on competitive strategy. We conduct a search via ProQuest, and ScienceDirect and collected 30 jour-
nal articles on the topic of supplier selection and outsourcing. Table 1 presents traditional vendor selection criteria that
consistently appear the most in academic studies. Key indices such as total purchase (ing) amount, number of items late
and number of items reject are usually selected to characterize the outsourcing performance related to cost, quality and
logistics. Emphasis was given to cost in the Literature between the late 1970s and early 1980s. Time factor and customer
responsiveness were added to the performance metrics system in the early 1990s. In the late 1990s, researchers began to
care about the importance of flexibility service. In recent years, a major concern is economic environmental safety among
the industrialized nations, as one of the major reasons to drive the development of supply chain risk management [32].

Outsourcing and offshore-sourcing has been popular recently. During the outsourcing process to geographically expand
their business, companies are considering supplier selection decision as a more complicated multi-criteria decision making
problem. They are facing not only classical choices such as cost or quality selection, but also on various risk and socio-
economic factors there they may have little experience. Therefore, supply selection has to be considered from the systematic
point of view under the framework of supply chain risk management.

The second stream of literature is the emerging area of research related to SC risk management. Many SC risks have been
identified. [53] analyzed supplier investment risks, and how each could be managed. [81] classified a broader set of SC risks
as internal and external, as well as by the level of controllability. [70] investigated the supply chain risks of the automotive
industry in German, and gave an empirical analysis. Supply chain risks can have serious negative impacts on the affected
firms [17,31]. These risks may be caused by internal factors inside their own company such as faulty planning and coordi-
nation procedures, in the SC such as loss or downgrading of supplier or by external factors such as natural catastrophes, eco-
nomic environment. SC risks can affect the whole range of SC performance indicators such as product quality, operational
cost and cost of assets, delivery reliability and delivery lead time, and flexibility in production [61]. Supply chain risk man-
agement are also motivated by different national and international laws and regulations from financial and accounting sec-
tors, e.g., the Sarbanes–Oxley Act in the United States in 2002, the Basel II Capital Accord in Europe in 2006, or the German
Corporate Governance Code in 2007. Actually, SC risk management has been developed as a new multiple disciplinary
embedded in the emerging area of enterprise risk management [54] and service risk management [79]. Under these circum-
stances, outsourcing has also evolved as an emerging area requiring handling of multiple disciplinary silos.



Table 1
Vendor selection criteria.

Criteria (number of references) References

Price/cost (29) [8,9,14,18–20,26,27,39,40,43,45,49–52,58–60,63–66,73,75–77,80,81]
Acceptance/quality (29) The same as above
On-time response/logistics (29) The same as above
R&D in technology/innovation/design (10) [8,10,14,19,27,50,58,64,76,77]
Production facilities/assets (10) [1,6,8,14,19,27,45,52,59,66]
Flexibility/agility (7) [8,10,19,32,43,60,76]
Service (6) [9,10,14,19,26,45]
Management and organization (5) [8,26,45,53,60]
Reliability/risk (5) [9,32,38,42,65]
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The third stream of literature has been heavily populated by studies of is fuzzy programming, possibilistic programming,
chance-constrained programming [5,67,84] in dealing with risk issues in SC management. These applications mainly
include:

� Uncertain SC production planning and control: [71] developed a multi-objective possibilistic programming to formulate a
supply chain master planning problem that integrated procurement, production and distribution planning in a multi-
echelon, multi-product and multi-period supply chain network. Ref. [82] studied the intrinsic evolutionary mechanism
of the vendor-managed inventory SCs by applying the evolutionary game theories. Ref. [74] models SC uncertainties
by fuzzy sets and develops a possibilistic SC configuration model for new products in a SC network.
� SC risk-based partner selection: [50] developed a fuzzy AHP model to partnership selection in the formation of virtual

enterprises. [51] employed fuzzy logic and neural-fuzzy approaches to rank the performance of suppliers in new product
development. Ref. [39] applied the fuzzy goal programming to solve the fuzzy vendor selection problem, and developed a
fuzzy goal programming approach for a vendor selection problem when minimizing multiple objectives including net
cost, net rejections, and net late deliveries.
� SC inventory management under uncertainty: Fuzzy logic and possibilistic programming have employed in modeling risk

factors such as demand or lead time uncertainty in inventory systems. Ref. [35] constructed a single-period inventory
model for the cases of fuzzy demands; Using fuzzy inventory costs and demand parameters, [72] develop an EOQ model,
which is extended in [47] to a multi-item fuzzy EOQ system. Ref. [10] assumes triangular fuzzy variable of production
quantity and derives a membership function of the total cost and EOQ in a production-inventory problem. Besides
demand and lead time, other risk factors such as various inventory costs are also tackled using fuzzy set and possibility
theories (e.g., [55,56]). In a broader setting, inventory management strategies are presented using a risk-attitude param-
eter (e.g., three levels of risk attitude–pessimistic, neutral, and optimistic) under uncertain SC environment [74]. Ref. [4]
implemented 3 algorithms for maximum covering location problems where the factory faces a fuzzy demand.

In a practical supply chain outsourcing risk management problem, lots of uncertainties exist. Random uncertainty of
financial indices such as total purchasing amount, number of items late and number of items reject are usually modeled
by use of probability theory [20]. Vague uncertainty of intangible criteria such as economic environment and vendor rate
has been treated using fuzzy set theory [78]. When multiple uncertainties are presented, integration of both theories is desir-
able. This has motivated our current study of developing integrated optimization model using both stochastic, fuzzy and pos-
sibilistic programming to treat risks and uncertainties in supply chain outsourcing problems.

3. Stochastic fuzzy multi-objective programming models

Before the development of our stochastic fuzzy multi-objective programming models, we define various notations as
follows:

Indices

i
 customers

j
 suppliers

Parameters:

ni
 the number of candidate suppliers desired by the ith customer

cij
 per unit purchase cost from supplier j by the ith customer

kij
 percentage of items late from supplier j to the ith customer

bij
 percentage of rejected units from supplier j

Di
 demand for item over planning period from the ith customer
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uu
ij
 maximum amount of business for item to be given to supplier j by the ith customer
ul
ij
minimum amount of business for item to be given to supplier j by the ith customer
wu
ij
 maximum order quantity from supplier j by the ith customer
wl
ij
minimum order quantity from supplier j by the ith customer
Functions

U(�)
 utility functions

Variables:

xij
 quantity purchased by the ith customer from supplier j�

zij
 decision variables ¼ 1; if supplier j is selected by the ith customer;

0; otherwise:
Objectives and constraints are defined as follows.

Objective 1: Maximize the total utility of purchase cost.
Objective 2: Maximize the utility of the number of rejected items.
Objective 3: Maximize the utility of the number of late deliveries.
Objective 4 and 5 in Model SFMOP (2): Minimize the risk factors. This equals to minimize the negative effect of economic
environment and vendor service rating.
Constraint 4: Ensures that the quantity demand is met.
Constraint 5: Ensures that the vendor’s capacity is not exceeded.
Constraint 6: Ensures that the customer’s proposed business to the vendor is not exceeded.
Constraint 7: Establishes minimum order quantities the vendors supply.
Constraint 8: Establishes minimum business for selected vendors.
Constraint 9: Ensures that there are no negative orders.
Constraint 10: Establishes binary nature of vendor selection decision.

We now present a deterministic multi-objective programming supplier selection model as follows. This model is based on
many traditional models but differs from prior models (e.g. [27,75,77]) due to the consideration of various demand risk from
many different customers. Note that in such a traditional model there are no constrains related to other indices, besides pur-
chasing amount, demand for items, and the relation between vendors selected and customers.

LMOP (1)
min f1ðxijÞ ¼
Xm

i¼1

Xni

j¼1

cijxij ftotal costg ð1:1Þ

min f2ðxijÞ ¼
Xm

i¼1

Xni

j¼1

bijxij f# rejectedg ð1:2Þ

min f3ðxijÞ ¼
Xm

i¼1

Xni

j¼1

kijxij f# lateg ð1:3Þ

subject to :
X

j

xij P Di; i ¼ 1; . . . ;m ð1:4Þ

xij P zijul
ij; 8i; j ð1:5Þ

xij 6 zijuu
ij flower and upper business bound set for the purchased amountg; 8i; j ð1:6Þ

xij P zijwl
ij; 8i; j ð1:7Þ

xij 6 zijwu
ij flower and upper order bound for the purchased amountg; 8i; j ð1:8Þ

xij P 0 ð1:9Þ
zij ¼ f0;1g; 8i; j ð1:10Þ
where j = 1, . . ., ni, represents the possible vendors selected for the ith customer. The model LMOP (1) simultaneously min-
imizes purchase cost (f1(xij)), percentage of items delivered late (f2(xij)) and percentage of items rejected (f3(xij)), while meet-
ing various constraints with respect to minimum and maximum order quantities. These goals were also used by Narasimhan
et al. in a multicriteria mathematical programming supply chain model. We have lower and upper bounds for xij from both
the vendor and the customer’s point of view, as expressed in Constraints (1.5)–(1.7) and (1.8). A ‘‘minimum business’’ con-
straint is employed in (1.8) to guarantee a non-zero procurement solution in the model. This is adopted from existing work of
[49]. Readers can refer to [23] for other techniques to cope with fuzzy constrains in the model. We note that minimizing cost
as a real measure of budget spent, might not fit real sense in business in the first objective. Other measures such as revenue
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or profit maximization could be a good alternative. We also recognize that in a great deal of literature minimizing cost is
used (e.g., [18]). For clarity of explosion, we leave this for further research.

In reality, rather than being exposed to pure exact and complete information, both tangible and intangible information
are usually available to decision makers related to decision criteria and constraints. Financial data such as cost and late deliv-
ery can exhibit a great deal of fluctuation. As a result, they are stochastic data rather than crisp values. Qualitative variables
such as the economic environment and vendor service rating evaluated by customers do not behave crisply and they are typ-
ically fuzzy in nature. To take both data into consideration, we develop an integrated multiobjective model to accommodate
both stochastic and fuzzy data, which we call stochastic-fuzzy multiobjective model (SFMOP). Here, utility theory is em-
ployed to treat stochastic data and fuzzy set theory is used to handle fuzzy data. Note that although Fuzzy Randomness
might be used to characterize such data, we prefer not to use such complicated concepts in our models [48]. We also note
that fuzzy data can be associated not only with qualitative information but also with quantitative information when it is
impossible to construct convincing stochastic estimates (‘‘short samples’’) but it is possible to construct fuzzy estimates. Be-
fore presenting the fuzzy model, we briefly discuss some definitions and properties on fuzzy set theory as follows. Readers
can refer to [44,83] for details of these definitions.

Definition 1 (Fuzzy Set). Let X be a space of points, with a generic element of X denoted by x. Hence X = {x}.
A Fuzzy Set is a class of objects with a continuum of grades of membership. It defined as A = {(x, lA (x))/x 2 X} where lA(x)

measures the degree to which element x belongs to set A, i.e., lA: X ? [0, 1].
Definition 2 (Membership Function). A membership function lA(x) is the membership function of x in A and a curve indi-
cating how each point in the universe of discourse is mapped to a value between 0 and 1.
Definition 3 (Convex fuzzy variables). A fuzzy variable ~x correspond to his membership function is non-convex based on:
l~Aðkx1 þ ð1� kÞx2ÞP minfl~Aðx1Þ;l~Aðx2Þg; x1; x2 2 X; k 2 ½0;1�
Definition 4 (a-cut). For every a 2 [0, 1], a given fuzzy set A yields a crisp set Aa = {x 2 XjA(x) P a} which is called an a-cut of
A.
Property. Denote by ~x1; ~x2; . . . ; ~xn n convex fuzzy variables, and ð~xiÞLa; ð~xiÞUa be the a-cut level lower and upper bounds of ~xi, for any
given possibility levels a1, a2 and a3(0 < a1, a2, a3 < 1), the following properties hold.

(i) Pð~x1 þ � � � þ ~xn 6 bÞP a1 if and only if ð~x1ÞLa1
þ � � � þ ð~xnÞLa1

6 b.
(ii) Pð~x1 þ � � � þ ~xn P bÞP a2 if and only if ð~x1ÞUa2

þ � � � þ ð~xnÞUa2
6 b:Moreover, if ~x1; ~x2; . . . ; ~xn are trapezoidal fuzzy numbers,

(i) and (ii) are reduced to (iii) and (iv) as follow:
(iii) Pð~x1 þ � � � þ ~xn 6 bÞP a1 if and only if ð1� a1Þ ð~x1ÞL1 þ . . .þ ð~xnÞL1

h i
þ a1 ð~x1ÞL2 þ � � � þ ð~xnÞL2

h i
6 b.

(iv) Pð~x1 þ � � � þ ~xn P bÞP a2 if and only if ð1� a2Þ ð~x1ÞU4 þ . . .þ ð~xnÞU4
h i

þ a2 ð~x1ÞU3 þ � � � þ ð~xnÞU3
h i

6 b:

Now we present our stochastic-fuzzy multiobjective model as SFMOP (2).
SFMOP (2)
max f
_

1
ðxijÞ ¼

Xm

i¼1

Xni

j¼1
Uðc

_

ijxijÞ ftotal purchase amountg

max f
_

2
ðxijÞ ¼

Xm

i¼1

Xni

j¼1
Uðk

_

ijxijÞ fnumber of items lateg

max f
_

3
ðxijÞ ¼

Xm

i¼1

Xni

j¼1

Uðb
_

ijxijÞ fnumber of items rejectedg

minef 4ðxijÞ ¼
Xm

i¼1

Xni

j¼1

~/ijxij feconomic env ironmentg

min ~f 5ðxijÞ ¼
Xm

i¼1

Xni

j¼1

~eijxij fvendor rateg

subject to :
X

j

xij P eDi; i ¼ 1; . . . ;ni fthe purchased amount from each customer must satisfy demandg

xij 6 zij min ~uu
ij; ~wu

ij

n o
8i; j

xij P zij max ~ul
ij; ~wl

ij

n o
8i; j fmax and min amount per vendor demandedg

xij P 0; 8i; j
zij 2 f0;1g; 8i; j
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In Model SFMOP (2), variables with the sign ‘‘_’’ and ‘‘�’’ denote stochastic and fuzzy variables respectively. For example,
c
_

ij denotes the stochastic per unit purchase cost from supplier j by the ith customer; ~/ij denotes the fuzzy influence on eco-
nomic environment from supplier j by the ith customer; ~eij denotes the fuzzy vendor rate from supplier j by the ith customer
and Uðc

_

ijxijÞ denotes the utility of the corresponding stochastic term c
_

ijxij. We consider in our outsourcing problem two risk
factors: economic environment and vendor service rating. Thus, two extra objectives are added to the objective functions to
minimize the negative effect of economic environment and vendor service rating.

4. Solution approach

SFMOP (2) is not easy to be solved. But using a specific property of fuzzy set and the mean–variance utility function, we
transform SFMOP (2) to QNMOP (5), which could be finally solved by regular solution approaches.

First we discuss the simplification of stochastic variable and fuzzy variable respectively. We use an assumption of normal
distribution and constant absolute risk aversion to simplify the stochastically distributed utility function, which will lead to a
mean–variance utility function.

When the central planner (manufacturer) is risk averse, we denote by qij (Arrow–Pratt measure of absolute risk aversion)
the degree of risk aversion from supplier j by the ith customer. When the utility function of the retailer has constant absolute
risk aversion, i.e., Uðc

_

ijxijÞ ¼ � expð�qij c
_

ijxijÞ, maximizing the expected utility is equivalent to maximizing the following cer-
tainty equivalent income:
EUðc
_

ijxijÞ ¼ �cijxij �
1
2
qijx

2
ijVðc

_

ijÞ; ðiÞ
_ _
where Vðc ijÞ denotes the variance of stochastic data c ij. The constant qij measures the degree of risk aversion: the larger qij is,
the more risk averse the central planner is.

Generally, when the income is normally distributed with mean m and variance v, the term m� 1
2 qv is the certainty equiv-

alent income of a risk averse player, where 1
2 qv is the risk premium. A risk premium is defined as the minimum difference a

person is willing to take an uncertain bet, between the expected value of the bet and the certain value that he is indifferent
to. The utility of the central planner decreases with the mean of his consumption and decreases with the variance. The rate of
decrease with the variance is larger the more risk averse the central planner is. Readers can refer to, for example, [64,65] for
further information on risk aversion.

For fuzzy variable terms, we introduce chance-constrained programming (CCP) by [11] as a way to make transformation
so that the resulted model is a possibility programming. In that sense, we actually propose a possibility approach to solve the
SFMOP (2). CCP deals with uncertainty by specifying the desired levels of confidence with which the constraints hold. Using
the concepts of CCP and possibility of fuzzy events (see Property of fuzzy set) and the mean–variance utility function, the
SFMOP model becomes the following possibility MOP model with quadratic objectives (QPMOP):

QPMOP (3)
min f�U1; �U2; �U3;
�f 4;

�f 5g

subject to : p
Xm

i¼1

Xni

j¼1

~/ijxij 6
�f 4

 !
6 a4 feconomic env ironmentg

p
Xm

i¼1

Xni

j¼1

~eijxij 6
�f 5

 !
6 a5 fvendor rateg

p
Xn

j¼1

xij P eDi

 !
6 a6 fthe purchased amount must satisfy demandg

p xij 6 zij~uu
ij

� �
6 a7

p xij 6 zij ~wu
ij

� �
6 a8

p xij P zij~ul
ij

� �
6 a9

p xij P zij ~wl
ij

� �
6 a10

xij P 0 8i; j
zij 2 f0;1g 8i; j
where
U1 ¼
Xm

i¼1

Xni

j¼1

uðc
_

ijxijÞ ¼
Xm

i¼1

Xni

j¼1

�cijxij �
1
2
qijx

2
ijVðc

_

ijÞ
� �

;

U2 ¼
Xm

i¼1

Xni

j¼1

uðk
_

ijxijÞ ¼
Xm

i¼1

Xni

j¼1

k
_

ijxij �
1
2
qijx

2
ijVðk

_

ijÞ
� �

;

U3 ¼
Xm

i¼1

Xni

j¼1

uðb
_

ijxijÞ ¼
Xm

i¼1

Xni

j¼1

b
_

ijxij �
1
2
qijx

2
ijVðb

_

ijÞ
� �

;
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p(�) denote the possibility of a certain event, �f 1 denote the upper bound of the related fuzzy variable, and ak (k = 1, . . ., 10) is
the acceptable risk level technique. Note that in the computation we transform all benefit-type variables into cost-type vari-
ables to keep consistent with all objectives in the QPMOP (3) model. The stochastic-fuzzy MOP model can not be solved like a
crisp model. We adopt a possibility approach and acceptable risk level technique, i.e., a-cut technique to convert the stochas-
tic-fuzzy MOP model to the standard deterministic problem. Given that parameters in the model QPMOP (3) are normal and
convex, we can convert QPMOP (3) into QPMOP (4) as follows.

QPMOP (4)
min f�U1; �U2; �U3;
�f 4;

�f 5g

subject to :
Xm

i¼1

Xni

j¼1

ð~/ijÞLa4
xij 6

�f 4 feconomic env ironmentg

Xm

i¼1

Xni

j¼1

ð~eijÞLa5
xij 6

�f 5 fvendor rateg

Xni

j¼1

xij P ðeDiÞLa6
fthe purchased amount must satisfy demandg

xij 6 zij min ~uu
ij

� �U

a7

; ~wu
ij

� �U

a8

� �
; 8i; j

xij P zij max ~ul
ij

� �U

a9

; ~wl
ij

� �U

a10

� �
; 8i; j fmax and min amount per vendor demandedg

xij P 0 8i; j

zij 2 f0;1g 8i; j
where a1 to a10 are all acceptable risk level technique, i.e., a-cut levels used to convert associated fuzzy number to a crisp
one, ð�ÞLak

and ð�ÞUak
ðk ¼ 1; . . . ;10Þ denote the lower and upper bounds of the ak-level set of associated fuzzy variable. In this

model, fuzzy numbers are converted to an interval number with upper and lower bounds by use of a-cut level techniques.
For example, ðeDiÞLa6

refers to the lower bound of fuzzy number eDi at the a6-cut level.
Constraints corresponding to fuzzy data in the QPMOP (4) model may take linear or non-linear forms depending upon

the membership functions of fuzzy parameters in the model. We consider trapezoidal fuzzy numbers in the model. A
trapezoidal membership function is confined by four parameters {a1, a2, a3, a4}. For example, a trapezoidal fuzzy number
~a ¼ ða1; a2; a3; a4Þ can be transformed into an interval number a = [a ⁄ a1 + (1 � a) ⁄ a2, a ⁄ a3 + (1 � a) ⁄ a4] by use of the
a-cut technique [21]. Therefore, using the trapezoidal fuzzy numbers, model QPMOP (4) is reduced to the following non-
linear deterministic programming model with quadratic objectives (QNMOP).

QNMOP (5)
min f�U1; �U2; �U3;
�f 4;

�f 5g

subject to : ð1� a4Þ
Xm
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Xni

j¼1

ð~/ijÞL1 xij þ a4

Xm

i¼1

Xni

j¼1

ð~/ijÞL2 xij 6
�f 4 feconomic env ironmentg

ð1� a5Þ
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Xni

j¼1

ð~eijÞL1 xij þ a5

Xm

i¼1

Xni

j¼1
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�f 5 fvendor rategX

j

xij P ð1� a6ÞðeDiÞL1 þ a6ðeDiÞL2 fthe purchased amount must satisfy demandg

xij 6 ð1� a7Þzij ~uu
ij

� �U
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þ a7zij ~uu
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� �U

3
8i; j
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8i; j
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4
þ a9zij ~ul
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� �U
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8i; j

xij P ð1� a10Þzij ~wl
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� �U

4
þ a10zij ~wl

ij

� �U

3
8i; j fmax and min amount per vendor demandedg

xij P 0; 8i; j

zij 2 f0;1g 8i; j
The deterministic programming model QNMOP (5) can be solved using regular solution approaches to a MOP (e.g.
[34,49]). It has been recognized that various techniques may be used to treat various objectives [62]. Typical means to handle
various objectives includes (I) sequential optimization where the objective functions are minimized sequentially (II) the
weighted sum of various objectives approach or goal programming approach where weights are introduced to convert
MOP into a single criterion search problem and (III) minimax criteria [34,49]. The sequential optimization and weighted
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sum approach usually are sensitive to the weights attached to different objectives and also computationally expensive.
Therefore, we use the minimax criteria to solve MOP, where the worst-case value of a set of multi-objective functions will
be minimized. This is generally referred to as the minimax problem. We use Matlab fminimax module in our computation,
where a sequential quadratic programming (SQP) method [7] is coded. Modifications are made to the line search and
Hessian. In the line search an exact merit function [46] is used together with the merit function proposed by [30,57]. The
line search is terminated whenever the merit function shows improvement.

Denote by X ¼

x11

x12

x13

x13

. . .
xmn

0BBBBBB@

1CCCCCCA; LB ¼

lb11

lb12

lb13

. . .
lbmn

0BBBB@
1CCCCA and UB ¼

ub11

ub12

ub13

. . .
ubmn

0BBBB@
1CCCCA the order quantity, the lower bound, and the upper bound of X
respectively. Solving Model QPMOP (4) is equivalent to solving the following minimax problem:
min
x

max
f�f ig
f�f iðxÞg i ¼ 1; . . . ;8

A � x 6 b

lb 6 x 6 ub
where the first constraint corresponds to the first six constraints in Model QPMOP (4) and the second constraint corresponds
to the last three constraints in Model QPMOP (4). Note that the lower bound LB imposed to the order quantity cannot be set
before the preferred suppliers are selected.
5. Numerical illustration

5.1. Supply chain model

In this section we use the proposed model to evaluate a supply chain consisting of three levels: a set of ten suppliers, a
core level represents the organizing, decision-making retail system and ten customers at the third level. Fig. 1 shows a dia-
gram about the connections among suppliers, distributions, and customers. Each customer represents a demand assumed to
be normal for a given period. The performance of each supplier is characterized with three quantitative variables: expected
costs, quality acceptance levels, and on-time delivery distributions, and two qualitative variables: economic environment
and vendor rating. The example is extracted from our previous study [81], where intangible variables are not considered.
Again, we use a simulated data based on distributions empirically derived for demonstration purpose because we are lack
of sufficient real historical data. Distributions of costs are assumed normal, distributions of acceptance failure are assumed
exponential and distributions of late delivery are assumed lognormal. These represent assumptions that could be replaced by
distributions empirically derived. The retailer must anticipate demand and order quantities of the modeled good to be deliv-
ered to arrive on time at each demand destination.

This supply chain system takes both internal operating risk such as demand and supply risks and external risk into con-
sideration. Both demand and supply risks are modeled by using probability distributions in data. External risk, denoted by
two economic environment and vendor ratings, is expressed in fuzzy data. The vendor ratings data can be collected from
various rating agencies such as Standard and Poors, where risk quality definitions have been classified into four categories,
i.e., ‘‘excellent’’, ‘‘strong’’, ‘‘adequate’’, and ‘‘weak’’ [33]. Profit is gained from sales made for goods successfully delivered to
each demand. Costs are probabilistic as outlined above, but total cost of goods sold has a mean given for each source supplier.
Goods not passing quality acceptance level are not paid for. Goods delivered late are paid for at a reduced rate, and are car-
ried forward at an inventory cost.

Table 2 provides data for vendor selection. Costs and product late delivery rate are crisp values as outlined in Table 2, but
risk factors and supplier’s service performance have fuzzy data for each source supplier. Data given is means (standard devi-
ation); Unit costs normally distributed, Accept rates are exponentially distributed, on-time rate lognormally distributed,
maximum and minimum order quantities from supplier j by the ith customer normally distributed.

The central retail system faces ten customers, each has a demand and seeks one common product. Product price is $2 per
item, time period assumed is a week. Different conditions could be modeled with little difficulty other than scale. Table 3
presents demand data, where Demand, maximum and minimum amount of business for item to be given to supplier j by
the ith customer are normally distributed.

5.2. Implementation

Now we implement the method from the prior section to data in Table 2. Qualitative data in both Tables 2 and 3 are fuzz-
ified using Trapezoidal fuzzy data and results are shown in Tables 4 and 5. For parameters such as cost, vendor rating, de-
mand, and rejection rate, the uu

ij; ul
ij; wu

ij, and wl
ij follow the normal distribution.

We use the following membership function for late rate since this variable follows lognormal distribution:
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Fig. 1. the connections among suppliers, distributions, and customers.

Table 2
Data for supplier selection.

Variable Vendor

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Unit cost 1.02 0.95 1.00 1.03 1.07 1.10 0.77 0.59 0.53 0.50
(0.01) (0.02) (0.03) (0.01) (0.05) (0.03) (0.05) (0.06) (0.07) (0.08)

Accept rate 0.99 0.99 0.99 0.98 0.97 0.95 0.98 0.95 0.90 0.8
(0.002) (0.002) (0.002) (0.020) (0.003) (0.01) (0.020) (0.020) (0.030) (0.1)

On-time rate 0.97 0.96 0.96 0.97 0.95 0.96 0.91 0.89 0.87 0.86
(0.003) (0.004) (0.004) (0.003) (0.005) (0.004) (0.009) (0.0011) (0.013) (0.014)

Economic environment Very bad Bad Bad Very bad Very bad Very bad Good Good Very good Very good
Vendor rating Low Low Low Very Low Very Low Very Low High High Very High Very High

Maximum 10,000 10,000 9000 8000 8000 7000 10,000 8000 6000 4000
(1000) (1000) (900) (800) (800) (700) (1000) (800) (600) (400)

Minimum 1000(100) 1000(100) 1000(100) 1000(100) 500(50) 500(50) 500(50) 500(50) 400(40) 300(20)

Table 3
Demand data.

Customer Parameter

Demand Maximum Minimum

C1 2725 (200) 50,000(1000) 3(0.30)
C2 2525 (200) 46,000(800) 3(0.30)
C3 1983 (300) 34,000(700) 2(0.20)
C4 1583 (300) 26,000(700) 1(0.10)
C5 1283 (300) 25,000(600) 2(0.20)
C6 1082 (300) 21,000(600) 1(0.10)
C7 1020 (250) 19,000(600) 4(0.40)
C8 1020 (250) 19,000(800) 4(0.40)
C9 1020 (250) 20,000(750) 2(0.20)
C10 920 (250) 19,000(650) 2(0.20)
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lðxÞ ¼

0ðx < x1Þ
f ðxÞðx1 < x < x2Þ
1ðx2 < x < x3Þ
f ðxÞðx3 < x < x4Þ
0ðx > x4Þ

8>>>>>><>>>>>>:

where f(x) is the probability distribution function of x.



Table 4
Risk premium and trapezoidal fuzzy data for supplier selection.

Vendor variable S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Unit cost (�E�05) 5.00 8.00 12 5.0 25 15 12.5 15 7.00 8.0
Rejected rate (�E�05) 1.00 40 8.0 1.0 1.5 5.0 0.5 5.0 3.0 10
Late rate (�E�05) 1.50 1.60 1.60 1.5 2.5 2.0 2.25 2.75 1.3 1.4
Economic environment [0.09,

0.092,
0.108,
0.11]

[0.2,
0.212,
0.228,
0.24]

[0.17,
0.192,
0.208
0.23,]

[0.06,
0.062,
0.078
0.08,]

[0.01,
0.052,
0.068,
0.11,]

[0.01,
0.032,
0.048,
0.07]

[0.55, 0.592, 0.608,
0.65,]

[0.692,
0.694,
0.706,
0.708]

[0.73,
0.792,
0.808
0.87]

[0.77,
0.842,
0.858
0.93]

Vendor rate [0.19,
0.192,
0.208,
0.21]

[0.28,
0.292,
0.308,
0.32]

[0.32,
0.342,
0.358,
0.38]

[0.17,
0.172,
0.188,
0.19]

[0.13,
0.142,
0.158,
0.17]

[0.07,
0.092,
0.108,
0.13]

[0.7, 0.742, 0.758,
0.8]

[0.74,
0.792,
0.808,
0.86]

[0.78,
0.842,
0.858,
0.92]

[0.82,
0.892,
0.908,
0.98]

Maximum [9000,
9500,
10,500,
11,000]

[9000,
9500,
10,500,
11,000]

[8100,
8550,
9450,
9900]

[7200,
7600,
8400,
8800]

[7200,
7600,
8400,
8800]

[6300,
6650,
7350,
7700]

[9000,
9500,10,500,11,000]

[7200,
7600,
8400,
8800]

[5400,
5700,
6300,
6600]

[3600,
3800,
4200,
4400]

Minimum [900,
950,
1050,
1100]

[900,
950,
1050,
1100]

[900,
950,
1050,
1100]

[900,
950,
1050,
1100]

[450,
475,
525,550]

[450,
475,
525,550]

[450, 475,525,550] [450,
475,
525,550]

[360,
380,
420,
440]

[280,
290,
310,
320]

Table 5
Trapezoidal demand data.

Customer Parameter

Demand Maximum Minimum

C1 [2525, 2625, 2775, 2925] [49,000, 49,500, 50,500, 51,000] [2.7, 2.85, 3.15, 3.3]
C2 [2325, 2425, 2625, 2725] [2410] [45,200, 45,600, 46,400, 46,800] [2.7, 2.85, 3.15, 3.3]
C3 [1682.5, 1832.5, 2132.5, 2282.5] [33,300, 33,650, 34,350, 34,700] [1.8, 1.9, 2.1, 2.2]
C4 [1282.5, 1432.5, 1732.5, 1882.5] [25,300, 25,650, 26,350, 26,700] [0.9, 0.95, 1.05, 1.1]
C5 [982.5, 1132.5, 1432.5, 1582.5] [24,400, 24,700, 25,300, 25,600] [1.8, 1.9, 2.1, 2.2]
C6 [782.5, 932.5, 1232.5, 1382.5] [20,400, 20,700, 21,300, 21,600] [0.9, 0.95, 1.05, 1.1]
C7 [768.75, 893.75, 1143.75, 1268.75] [18,400, 18,700, 19,300, 19,600] [3.6, 3.8, 4.2, 4.4]
C8 [768.75, 893.75, 1143.75, 1268.75] [18,200, 18,600, 19,400, 19,800] [3.6, 3.8, 4.2, 4.4]
C9 [768.75, 893.75, 1143.75, 1268.75] [19,250, 19,625, 20,375, 20,750] [1.8, 1.9, 2.1, 2.2]
C10 [668.75, 793.75, 1043.75, 1268.75] [18,350, 18,675, 19,325, 19,650] [1.8, 1.9, 2.1, 2.2]
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A simple data-preprocessing technique is applied to Unit cost data by dividing a constant value of 10 in order to yield a
similar unit cost values to late delivery and reject rate data. Trapezoidal fuzzy data are yielded in Tables 4 and 5 from Tables
2 and 3, where Trapezoidal data are given by: [minimum (value 0), left (value 1), right (value 1), maximum (value 0)]. Table 4
also presents risk premium values for suppliers. Risk premium values are yielded using Formula (i) for three stochastic vari-
ables: Unit Cost, Rejected Rate and Late Rate.

Trapezoidal data can be transformed to an interval number by employing the acceptable risk level technique, i.e., a-cut
technique. For example, if we use the value of 0.5 for a, the interval data in Tables 6 and 7 are obtained. We present a sen-
sitivity analysis of optimal solutions with respect to a in Section 5.2.1 and depict the result in Fig. 2.
5.2.1. Optimization
Optimization model QNMOP (5) is solved by use of the proposed algorithm and minimax criteria ([16]). Codes are written

in MATLAB language, where ‘‘fminmax’’ function of MATLAB’s Optimization Toolbox is used. The subroutine ‘‘fminmax’’ basi-
cally uses the sequential quadratic programming algorithm proposed in [7].
Table 6
Interval data.

Vendor variable S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Economic
environment

[0.0917,
0.1083]

[0.2102,
0.2298]

[0.1887,
0.2113]

[0.0617,
0.0783]

[0.0457,
0.0743]

[0.0287,
0.0513]

[0.5857,
0.6143]

[0.6923,
0.7077]

[0.7827,
0.8173]

[0.8312,
0.8688]

Vendor Rate [0.1917,
0.2083]

[0.2902,
0.3098]

[0.3387,
0.3613]

[0.1717,
0.1883]

[0.1402,
0.1598]

[0.0887,
0.1113]

[0.7357,
0.7643]

[0.7842,
0.8158]

[0.8327,
0.8673]

[0.8812,
0.9188]

Maximum [9425,
10,750]

[9425,
10,750]

[8482.5,
9675]

[7540,
8600]

[7540,
8600]

[6597.5,
7525]

[9425,
10,750]

[7540,
8600]

[5655,
6450]

[3770,
4300]

Minimum [942.5,
1057.5]

[942.5,
1057.5]

[942.5,
1057.5]

[942.5,
1057.5]

[471.25,
528.75]

[471.25,
528.75]

[471.25,
528.75]

[471.25,
528.75]

[377, 423] [288.5,
311.5]



Table 7
Interval demand data.

Customer Parameter

Demand Maximum Minimum

C1 [2610, 2840] [49,425, 50,575] [2.775, 3.1725]
C2 [2410, 2640] [45,540, 46,460] [2.775, 3.1725]
C3 [1810, 2140] [33597.5, 34402.5] [1.85, 2.115]
C4 [1410, 1740] [25597.5, 26402.5] [0.925, 1.0575]
C5 [1110, 1440] [24,655, 25,345] [1.85, 2.115]
C6 [910, 1240] [20,655, 21,345] [0.925, 1.0575]
C7 [875, 1162.5] [18,655, 19,345] [3.7, 4.23]
C8 [875, 1162.5] [18,540, 19,460] [3.7, 4.23]
C9 [875, 1162.5] [19568.75, 20431.25] [1.85, 2.115]
C10 [775, 1062.5] [18626.25, 19373.75] [1.85, 2.115]

Fig. 2. The trend of five objective values with changes in a-cut level.
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Our optimization model has a couple of parameters, which can complicate our analysis. We need to find appropriate
parameter values to facilitate our result analysis. First we check the effect of changing two parameters of acceptable risk lev-
els and weights over the optimal objective solution. Fig. 2 depicts the trend of five optimal objective values with the change
of a-cut level. As can be seen from Fig. 2, five optimal objectives values do not change much with respect to a-cut level when
a is no less than 0.5. Thus, we set the a-cut level value to 0.5 in our hereby computation.

We then ran the model twice in two deterministic cases using a = 0.5 and different weights. Table 8 reports the order quan-
tity for each customer using equal weights over five criteria from each supplier, using a a-cut level value of 0.5. Computation
suggests service outsourcing to four suppliers, i.e., S6, S8, S9 and S10. Eight customers selected at least two suppliers while the
rest two prefer only S9 or S10. S1–S5 are never selected, which means that no customer can distinguish S1–S5.

The order quantity using unequal weights: (x1,x2, x3, x4, x5) = (0.304, 0.182, 0.007, 0.328, 0.178) are presented in
Table 9. Given unequal weights to different objectives, S6 was never selected by any customer. Only C4 selected a single
supplier. S1–S7 are never selected, which means that no customer can distinguish S1–S7. From both Tables 8 and 9 we know
that weights seriously affect the final decision and a simulation analysis over weights is important as we will do in next
section.
Table 8
The order quantity using equal weight.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

C1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 2625.000
C2 0.000 0.000 0.000 0.000 0.000 462.500 0.000 0.000 1962.489 0.000
C3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 462.500 542.500 820.000
C4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1424.857 0.000
C5 0.000 0.000 0.000 0.000 0.000 462.500 0.000 462.500 370.000 0.000
C6 0.000 0.000 0.000 0.000 0.000 462.500 0.000 462.500 0.000 0.000
C7 0.000 0.000 0.000 0.000 0.000 462.500 0.000 0.000 370.000 285.000
C8 0.000 0.000 0.000 0.000 0.000 462.500 0.000 0.000 370.000 285.000
C9 0.000 0.000 0.000 0.000 0.000 462.500 0.000 0.000 370.000 285.000
C10 0.000 0.000 0.000 0.000 0.000 462.500 0.000 0.000 370.000 0.000



Table 9
The order quantity using unequal weight.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

C1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1378.041 1231.959
C2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1309.959 1100.041
C3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1810.000 0.000 0.000
C4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 592.000 534.000 284.000
C5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 460.000 368.000 284.000
C6 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 626.000 284.000
C7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 591.000 284.000
C8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 591.000 284.000
C9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 591.000 284.000
C10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 491.000 284.000
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5.3. Simulation

Simulation is a popular tool used for performance optimization, safety engineering, testing, training and education.
Simulation is used to demonstrate the eventual ‘‘real’’ effects of alternative conditions and courses of action. Simulation
models in multiple criteria decision making (MCDM) has been discussed a lot [80,81]. The simple multiattribute rating
theory in MCDM bases supplier selection on the rank order of the product of criteria weights and alternative scores over
these criteria [22]. In this section, we conduct MCDM optimization simulation with random distributed weights by assuming
a set of weights with ranges and order pre-specified. Weights are assumed to be independently uniformly distributed be-
tween 0 and 1. 500 simulation runs are conducted in Matlab. Results are presented in Table 10, where probabilities of each
alternative being preferred by each customer and total optimal order quantity are reported. Other than four suppliers
selected in Table 8, Supplier S2 was selected. Simulation generates very consistent result to Tables 8 and 9 in terms of iden-
tifying most preferred suppliers. When employing the mean of probability scores to rank the rest suppliers, Supplier S9 is the
most preferred candidate with the largest amount of order quantity. Five suppliers are never selected. It can be seen from
Table 10 that
Table 1
Simulat

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
Mea
Orde
S9 � S10 � S8 � S2 � S6;
where the symbol \ � " denotes \is superior to":
An interesting observation is that although S8 was more preferred to S2, the total order quantity from S8 was less than
that from S2. This is mainly because that S2 allows larger amounts of order quantity with the lower bound value being 1000
than S8 with a value of 500. Moreover, all customers seem to be concerned about economic environment and vendor ratings.

Another very interesting observation is the risk averse and procurement behavior shown in Table 11, where risk averse
parameter values and mean of order quantities for different customers are given. The risk averse parameter q measures the
degree of risk aversion: the larger q is, the more risk averse the central planner is. From Table 11 we can see that Customers
C1–C6 are more risk averse than C7–C10 because they are using larger risk averse parameters. Table 11 indicates a more risk
averse customer prefers to order less. For example, C1 is more risk averse than C7–C10 and only order the lowest quantities
2610 which is allowed by Lower Bound of Demand. A less averse customer such as C10 will order 852.2 which is much higher
than Lower Bound of Demand value of 775.

There are practical situations where company managers may prefer to put more emphasis on one criteria over the other.
In such a situation, understanding how the trade-off results are affected by manager’s preference is important. To model
such a situation, we draw trade-offs games among different optimal objective values in Figs. 3–5, where X-axis value denotes
weight values assigned to the left Y-axis variable. Fig. 3 depict the optimal objective trade-off between Total Purchase Amount
0
ion estimates of probability of selection and order quantity with five criteria.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.3 0.9 0.9
0.0 0.4 0.0 0.0 0.0 0.1 0.0 0.3 0.9 0.9
0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.8 0.9 0.7
0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.7 1.0 0.7
0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.7 0.9 0.9
0.0 0.3 0.0 0.0 0.0 0.1 0.0 0.1 0.6 0.7
0.0 0.4 0.0 0.0 0.0 0.1 0.0 0.1 0.6 0.7
0.0 0.3 0.0 0.0 0.0 0.1 0.0 0.1 0.8 0.8
0.0 0.4 0.0 0.0 0.0 0.1 0.0 0.1 0.7 0.7
0.0 0.3 0.0 0.0 0.0 0.1 0.0 0.2 0.7 0.7

n 0.00 0.33 0.00 0.00 0.00 0.07 0.00 0.34 0.80 0.77
r Q 0 310705.3 0 0 0 3237.5 0 221612.2 472719.8 392,820



Fig. 3. trade-off game between Total Purchase Amount and Number of Items Rejected.

Table 11
Risk averse and procurement behavior.

Parameter Customer

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

q 0.010 0.008 0.008 0.010 0.010 0.010 0.005 0.005 0.002 0.002
Lower bound of demand 2610 2410 1810 1410 1110 910 875 875 875 775
Mean of order quantities 2610 2410 1810 1426.2 1120.6 913 893 912.2 916.7 852.2

Fig. 4. trade-off game between Total Purchase Amount and Vendor Rate.
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and Number of Items Rejected. From Fig. 3, we see that when the weight is either very small or large there exists consistent
trend between two objectives while an obvious conflicting trend exists when the weight falls in the middle area. The worst
Total Purchase Amount and the best Number of Items Rejected are obtained when the weight is smaller than 0.2.

It can be observed from Fig. 4 that the Total Purchase Amount and Vendor Rate hold conflict changing trend almost every-
where in the weight area. The worst Total Purchase Amount and the best Vendor Rate are achieved a weight value of Total



Fig. 5. trade-off game between Number of Item Late and Economic Environment.
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Purchase Amount smaller than 0.05. Fig. 5 gives the trade-off game between optimal Number of Item Late and Economic Envi-
ronment. Fig. 5 indicates that these two indices hold conflict changing trend over anywhere in the weight area of being less
than 0.29. Optimal Number of Item Late does not change when the weight attached to it is larger than 0.29. Such trade-off
game information including supported points on the trade-off curve is generally very useful for decision makers to identify
proper weighting scheme where Pareto optimum is achieved to yield preferred suppliers.
5.4. Comparison analysis

This section conducts a comparison analysis between previous five-objective case and three-objective case by excluding
external risk factors of economic environment and vendor rating. This comparison allows us to check the effect of external
risk factors such as economic environment and vendor rating over the vendor selection decision process. The stochastic MOP
models are solved by using only three quantitative variables: cost, delivery and acceptance. Simulation estimates of proba-
bility of selection and order quantity are presented in Table 12 using these three criteria.

Table 12 indicates Supplier S6 is never selected but S1 and S4 are sometimes selected. Should the mean of probability
scores to rank the rest suppliers, Supplier S10 is the most preferred candidate but S9 yields the largest amount of order quan-
tity. The explanation here preserves the same to that for the five-objective case. Again, this is because S9 has a larger lower
bound order quantity than S10. From Table 12, we can see that using the mean of probability scores to rank suppliers lead to
the rank order:
Table 1
Simulat

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
Mea
Orde
S10 � S9 � S8 � S2 � S1 � S4
The rank order of S2 and S8 is the same to that in the five-objective case. The other suppliers change orders. This means
external risk factors such as economic environment rate and vendor rate do change selection decision of appropriate
suppliers.
2
ion estimates of probability of selection and order quantity with three criteria.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

0.20 0.20 0.00 0.10 0.00 0.00 0.00 0.30 0.80 0.70
0.20 0.20 0.00 0.10 0.00 0.00 0.00 0.40 0.70 0.70
0.10 0.20 0.00 0.00 0.00 0.00 0.00 0.90 0.40 0.50
0.10 0.20 0.00 0.00 0.00 0.00 0.00 0.80 0.60 0.60
0.10 0.20 0.00 0.00 0.00 0.00 0.00 0.80 0.80 0.80
0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.80
0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.70 0.80
0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.10 0.70 0.80
0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.80 0.80
0.10 0.10 0.00 0.00 0.00 0.00 0.00 0.10 0.50 0.80

n 0.12 0.15 0.00 0.02 0.00 0.00 0.00 0.34 0.68 0.73
r Q 11040.0 13800.0 0.0 1840.0 0.0 0.0 0.0 23591.0 51840.0 37104.0
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A comparison between the three-objective case and five-objective case from Tables 11 and 12 indicates that the proba-
bility value of selecting S9, S10 and S2 in the five-objective case is in general larger than that in the three-objective case.
However, the probability of selecting S1, S4 and S8 in the five-objective case is in general smaller than that in the three-
objective case. This indicates most customers prefer to order more when from suppliers providing better economic environ-
ment and vendor rate, which is actually a risk-averse behavior.
6. Conclusions and further consideration

We have developed a stochastic fuzzy multi-objective programming model for supply chain outsourcing risk manage-
ment in presence of both random uncertainty and fuzzy uncertainty. Utility theory is proposed to treat stochastic data
and fuzzy set theory is used to handle fuzzy data. An algorithm is designed to solve the proposed integrated model. We apply
this new approach to model a supply chain consisting of three levels: a set of ten suppliers, a core distribution level and ten
customers at the third level. Example is extracted from existing study to demonstrate implementation of the proposed
models.

This approach allows specification of different risk aversion and various levels of uncertainty by use of he predefined fuz-
zy number with the certain confidence of level (a-cut-level). Several interesting managerial insights are yielded from scenario
analysis of computation results. Risk averse and procurement behavior indicates that a more risk averse customer prefers to
order less under uncertainty and risk. Trade-off game analysis yields supported points on the trade-off curve, which is very
useful for decision makers to identify proper weighting scheme where Pareto optimum is achieved to yield preferred sup-
pliers. It is known that the uncertainty of information generates the uncertainty decision regions. Therefore, in a further re-
search we will show how the results permit one to generate a set of alternative solutions which cannot be distinguished
within the framework of the developed model.
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