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a b s t r a c t

Value at risk is a popular approach to aid financial risk management. Questions about
the appropriateness of the measure have arisen since the related 2008 bubble collapses
in some US housing markets and the global financial market. These questions include
the presence of fat tails and their impact. This paper compares results based upon
assumptions of normality and logistic distributions, comparing portfolios generated with
various probabilistic models. Computations are applied to real stock data. Optimization
models are described,with simulationmodels evaluating comparativemodel performance.
Chi-square tests indicated that logistic distribution better fit the data than the normal
distribution. The error implied by value-at-risk assumptions is demonstrated through
Monte Carlo simulation.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Risk management has provided many tools to evaluate the chance of loss. Hubbard [1] defines risk management as
the identification, assessment, and prioritization of risks followed by coordinated and economical application of resources
to minimize, monitor, and control the probability and/or impact of unfortunate events. Taleb [2] condenses this to being
prepared for all relevant eventualities. This is a comprehensive view of risk management, covering all possible risks facing
an organization. The fact is that one cannot expect compensation or profit without taking on some risk. The key to successful
risk management is to select those risks that one is competent to deal with, and to find someway to avoid, reduce, or insure
against those risks not in this category.

Markowitz [3] equated risk with variance, which would be controlled by diversification, considering correlation across
the investments that are available. Hismodels focused on identifying efficient portfolios non-dominatedwith respect to risk
and return. This leads to the need for some calculus of preferences, such as multi-attribute utility theory ([4] as one source
among hundreds). Financial risk management has developed additional tools such as value at risk.

Value at risk (VaR) is one of the most widely used models in risk management [5]. It is based on probability and
statistics [6]. VaR can be characterized as a maximum expected loss (a point estimate), given some time horizon and within
a given confidence interval. Its utility is in providing a measure of risk that illustrates the risk inherent in a portfolio with
multiple risk factors, such as portfolios held by large banks, which are diversified acrossmany risk factors and product types.
VaR is used to estimate the boundaries of risk for a portfolio over a given time period, for an assumed probability distribution
of market performance. It is a point estimate based upon the assumed probability distribution. The purpose is to diagnose
risk exposure.
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Definition. VaR describes the probability distribution for the value (earnings or losses) of an investment (firm, portfolio,
etc.). The mean is a point estimate of a statistic, showing historical central tendency. VaR is also a point estimate, but offset
from the mean. It requires specification of a given probability level, and then provides the point estimate of the return or
better expected to occur at the prescribed probability.

However, VaR has undesirable properties, especially for gain and loss datawith non-elliptical distributions. It satisfies the
well-accepted principle of diversification under normal distribution. However, it violates the fairly accepted sub-additive
rule; i.e., the portfolio VaR is not smaller than the sum of component VaR. The reason is that VaR only considers the extreme
percentile of a gain/loss distribution without considering the magnitude of the loss. As a consequence, a variant of VaR,
usually labeled Conditional-Value-at-Risk (or CVaR), has been used. In computational issues, optimization of CVaR can be very
simple, which is another reason for the adoption of CVaR. This pioneer work was initiated by Rockafellar and Uryassev [7],
where CVaR constraints in optimization problems can be formulated as linear constraints. CVaR represents a weighted
average between the VaR and losses exceeding the VaR. CVaR is a risk assessment approach used to reduce the probability
a portfolio will incur large losses assuming a specified confidence level. It is possible to maximize portfolio return subject
to constraints including CVaR and other downside risk measures, both absolute and relative to a benchmark (market and
liability based). Simulation based models to optimize CVaR under controlled conditions can be developed.

2. Model development

Our study examines various formulations from chance constrained programming [8] with respect to risk-minimization
decisions in investment. Optimization models are generated with Excel Solver (which uses the generalized reduced
gradient algorithm for nonlinear optimization). We compare three traditional models of VaR and CVaR based on assumed
distributions. We verify model results with Monte Carlo simulation using Crystal Ball software.

2.1. Monte Carlo simulation of VaR and CVaR

Simulation models are sets of assumptions concerning the relationship among model components. Among these
assumptions are probability distributions, such as a normal distribution (with parameter for amean), lognormal (parameters
mean and variance), or any of a number of other distributions. A simulation run is a sample from an infinite population of
possible results for a givenmodel. After a simulationmodel is built, a selected number of trials can be established. Statistical
methods can be used to validate simulation models and design simulation experiments.

Many financial simulationmodels can be accomplished on spreadsheets, such as Excel. There are a number of commercial
add-on products that can be added to Excel, such as @Risk, Crystal Ball, or Frontline Solver that vastly extend the simulation
power of spreadsheet models [9]. These add-ons make it very easy to replicate simulation runs, and include the ability
to correlate variables, expeditiously select from standard distributions, aggregate and display output, and other useful
functions.

2.2. Portfolio optimization models

This section discusses traditional portfolio optimization models based on mean–variance framework and chance
constraints. As before, denote by yi the annual return rate of investing in Security i. Denote by σ 2

i the variance of Security i
and σij the variance–covariance between Security i and j. The first approach is to maximize the expected return, a linear
programming model with a trivial solution (invest everything in the investment alternative with the highest expected
return). This option of course usually involves high risk. For purposes of modeling, we use daily average returns for the
investment options used. As the daily returns are quite small, we use an investment pool of 1000 currency units:

Max Expected Return =

n
i=1

yiwi

Subject to :

n
i=1

wi ≤ 1000

wi ≥ 0 for all j

where wi is the amount invested in investment option i and yi is the return from investment option i.
The second model is to minimize variance:

Min Variance =

n
i=1

n
j=1

wiwjσij

Subject to :

n
i=1

wi ≤ 1000

wi ≥ 0 for all i.
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The third optimization model we consider is to maximize the value at the 0.95 level of attainment, which is equivalent
to maximizing the target in the third model, with a specified α (we used 0.95):

Max Target

Subject to :

n
i=1

wi ≤ 1000

V =

n
i=1

yiwi − t0.05,d.f.

 n
i=1

n
j=1


wiwjσij


wi ≥ 0 for all i.

This would be equivalent to a model maximizing VaR if VaR were defined in terms of the median when assuming t-
distribution in return data. If we define conditional value at risk, CVaR, as the median of the outcomes worse than VaR, we
could utilize a t0.025,d.f. in the penalty function, which would be equivalent to maximizing the limit at the 0.975 probability
level.

Similarly, we can develop models (2) maximizing the expected portfolio value subject to both CVaR and chance
constraints, and (3) maximizing probability of satisfying a chance constraint set.

All the three models include a common general chance constraint set, allowing probabilistic attainment of functional
levels:

P{−wTyj ≤ −Rj} ≥ βj.

This set is nonlinear, requiring a nonlinear programming solution. This inhibits the size of the model to be analyzed, as large
values of model parametersm (number of constraints) and especially n (number of variables) make it much harder to obtain
a solution.

The fourth type of model is a chance constrained model:

Max Expected Return =

n
i=1

yiwi

Subject to :

n
i=1

wi ≤ 1000

Pr


n

i=1

yiwi = target


= α

wi ≥ 0 for all i.

The chance constraint Pr
n

i=1 yiwi = target


= α is equivalent to:

n
i=1

yiwi − t∝,d.f.

 n
i=1

n
j=1


wiwjσij


= target.

We used targets of 1000 (investment breakeven), 950, and 900.

3. Generating solutions

Data was gathered fromWeb sources over five investment options: Morgan StanleyWorld Index (MSCI), New York Stock
Exchange Composite Index (NYSE), Standard & Poors 500 (S&P), Shenzhen Composite (China), and Eurostoxx50 (Euro). Daily
data for a period was split into two equal groups of 370 observations each. The data set labeled ‘‘pre-bubble’’ was from
6/29/2006 through 1/2/2007, while the data set labeled ‘‘post-bubble’’covered 1/3/2007 through 7/6/2009. Data shown in
Table 1 is for daily change multiplied by 100, as using daily change led to too many decimal places to detect results from
the software. Models were developed in Excel, using annual data for means, variances, and covariances. The data is given in
Table 1.

Clearly, the post-bubble period was much worse, with an average loss for each investment option, and a much larger
standard deviation.

3.1. Distribution fitting

Datawas tested for distribution using Crystal Ball, which can test fourteen continuous distributions. The data exhibited fat
tails. This was expected, as Hubbard [1] andmany others have pointed out. The error caused is that if the normal distribution
is assumed, and the distribution spreads out more (thus fat tails), decision makers falsely assume less risk than actually is
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Table 1
Data measures—annual return from investment (100 times daily).

Pre-bubble MSCI NYSE S&P China Eurostoxx

Mean 0.063 0.058 0.045 0.359 0.062
St Dev 0.749 0.953 0.900 2.092 0.963
Min −2.484 −3.630 −3.472 −8.543 −2.886
Max 2.025 3.136 2.921 8.709 2.929
Post-bubble
Mean −0.121 −0.105 −0.098 −0.064 −0.138
St Dev 2.044 2.613 2.488 2.755 2.402
Min −7.063 −9.756 −9.035 −11.924 −7.880
Max 9.523 12.216 11.580 8.888 11.002

Table 2
Relative distribution fits (probabilities from chi-square tests).

Pre-bubble MSCI NYSE S&P China Eurostoxx

Logistic 0.356 0.023 0.001 0.003 0.475
Student-t 0.036 0.005 0.000 0.009 0.053
Normal 0.006 0.000 0.000 0.000 0.021
Lognormal 0.004 0.000 0.000 0.000 0.014
Post-bubble
Logistic 0.034 0.050 0.057 0.266 0.063
Student-t 0.007 0.003 0.114 0.046 0.023
Normal 0.000 0.000 0.000 0.017 0.000
Lognormal 0.000 0.000 0.000 0.012 0.000

Table 3
Distribution fit parameters (100 times daily).

Pre-bubble MSCI NYSE S&P China Eurostoxx

Logistic (mean, scale) 0.09, 0.41 0.09, 0.50 0.07, 0.47 0.49, 1.10 0.07, 0.53
Student-t (mean, stdev, d.f.) 0.06, 0.70 14.5 0.06, 0.82, 7.5 0.04, 0.76 6.9 0.36, 1.72, 6.2 0.06, 0.91, 17.6
Normal (mean, stdev) 0.06, 0.75 0.06, 0.95 0.04, 0.90 0.36, 2.09 0.06, 0.96
Lognormal (location, mean, stdev) −5510, 0.06, 0.75 −8642, 0.06, 0.95 −8075, 0.04, 0.90 −25, 0.36, 2.21 −8047, 0.06, 0.96

Post-bubble
Logistic (mean, scale) −0.09, 1.05 −0.09, 1.35 −0.10, 1.28 0.03, 1.50 −0.15, 1.24
Student-t (mean, stdev, d.f.) −0.12, 1.67, 6.0 −0.10, 2.14, 6.0 −0.10, 2.02, 5.9 −0.06, 2.43, 8.9 −0.14, 1.96, 5.99
Normal (mean, stdev) −0.12, 2.04 −0.10, 2.61 −0.10, 2.49 −0.06, 2.75 −0.14, 2.40
Lognormal (location, mean, stdev) −27065, −0.12, 2.04 −182, −0.10, 2.61 −111, −0.10, 2.49 −25134, 0.06, 2.75 −55, −0.14, 2.40

present. In testing the data for distributions, we checked each of the five investments (by pre-bubble and post-bubble sets).
We used the Crystal Ball option to check all the fourteen continuous distributions. Relative fits of the distributions that had
the best chi-square scores are shown in Table 2.

The logistic distribution proved the best fit in both subsets of data, each containing 370 observations. There was one case
where the student-t distribution had a slightly better fit than the logistic distribution (pre-bubble China) using Chi-square
(Kolmogorov–Smirnov and Anderson–Darling tests had better fit for logistic). The fits were usually better for the pre-bubble
data subset than for the post-bubble data subset, although nonewere extremely strong. Normal and lognormal distributions
had similar fits, but the lognormal distribution had fewer degrees of freedom and thus had a slightly lower probability of fit
for the Chi-square test than did the normal distribution. Table 3 gives distribution parameters for each data series.

Our interest now is on the impact of assuming the normal distribution, using the pre-bubble data to model the data,
testing it on the post-bubble data. Fig. 1 shows the logistic distribution fit for MSCI over the pre-bubble period, Fig. 2 for
student-t , and Fig. 3 for normal.

The fits look similar, and the 0.95 VaR for each is quite similar. However, the minimum statistics for each are −5.19 for
logistic, −3.43 for student-t , and −2.67 for normal, demonstrating thicker tails for the logistic and student-t distributions
than for the normal distribution. Table 4 compares statistics for these distributions generated through simulation.

The logistic distribution had a wider spread (due to the presence of fatter tails), confirmed by the kurtosis measures.

3.2. Generation of portfolios

Models were generated and solved with Excel Solver with the following objective functions.

(1) Maximize expected return s.t. budget ≤ 1.
(2) Minimize variance s.t. investment = 1.
(3) Maximize VaR for α = 0.99, 0.95, and 0.9.
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Fig. 1. Logistic fit for MSCI—pre-bubble.

Fig. 2. Student-t fit for MSCI—pre-bubble.

Fig. 3. Normal fit for MSCI—pre-bubble.

Table 4
Statistics for MSCI pre-bubble distributions generated— daily return.

Statistic Logistic (0.09, 0.41) Student-t (0.06, 0.70, 14.5) Normal(0.06, 0.75)

Mean 0.09 0.06 0.06
Standard deviation 0.74 0.08 0.75
Skewness −0.0278 −0.0195 0.0019
Kurtosis 4.31 3.49 3.00
Minimum −5.19 −3.43 −2.70
Maximum 3.88 3.10 3.11
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Table 5
Model results based on logistic assumption.

Objective MSCI NYSE S&P China Euro

Max E[return] 0 0 0 1 0
Min Variance 0.884 0 0.029 0.087 0
Min VaR(0.99) 0.882 0 0.013 0.105 0
Min VaR(0.95) 0.881 0 0.004 0.115 0
Min VaR(0.9) 0.875 0 0 0.125 0
Max Pr{E[Ret] > 1} 0.529 0 0 0.471 0
Max Pr{E[Ret] > 0.95} 0.668 0 0 0.332 0
Max Pr{E[Ret] > 0.90} 0.734 0 0 0.266 0
CC {Pr > 0.6[Ret > 1]} 0.047 0 0 0.946 0.007

Table 6
Simulated post-bubble model annual return—logistic.

Objective Return Variance VaR(0.99) VaR(0.95) VaR(0.90) Pr{>1} Pr{>0.95} Pr{>0.9}

Max E[return] 0.359 4.364 4.933 3.032 2.172 0.5773 0.5878 0.5983
Min Variance 0.088 0.526 1.749 1.089 0.791 0.5547 0.5853 0.6153
Min VaR(0.99) 0.093 0.527 1.747 1.086 0.786 0.5581 0.5886 0.6185
Min VaR(0.95) 0.097 0.530 1.747 1.085 0.785 0.5599 0.5904 0.6201
Min VaR(0.9) 0.100 0.533 1.750 1.085 0.785 0.5616 0.5919 0.6215
Max Pr{E[Ret] > 1} 0.202 1.205 2.579 1.580 1.128 0.5827 0.6026 0.6222
Max Pr{E[Ret] > 0.95} 0.161 0.803 2.109 1.294 0.924 0.5807 0.6051 0.6290
Max Pr{E[Ret] > 0.90} 0.142 0.675 1.940 1.192 0.854 0.5775 0.6041 0.6302
CC {Pr > 0.6[Ret > 1]} 0.343 3.921 4.674 2.872 2.056 0.5778 0.5890 0.6000

Table 7
Model results based on normal assumption.

Objective MSCI NYSE S&P China Euro

Min VaR(0.99) 0.882 0 0.0115 0.1065 0
Min VaR(0.95) 0.881 0 0.004 0.115 0
Min VaR(0.9) 0.877 0 0 0.123 0
Max Pr{E[Ret] > 1} 0 0 0.174 0.423 0.403
Max Pr{E[Ret] > 0.95} 0.517 0.001 0 0.343 0.139
Max Pr{E[Ret] > 0.90} 0.734 0 0 0.266 0
CC {Pr > 0.6[Ret > 1]} 0.695 0 0 0.305 0

(4) Maximize probability{return > specified level} for levels [1, 0.95, and 0. 90].
(5) Maximize expected return s.t. probability{return = specified level} = α for return of 1 and α [0.6].

Excel Solver is capable of nonlinear optimization, using generalized reduced gradientmethods. Table 5 gives the solutions
obtained.

Looking at the solutions, the Chinese stock index clearly had the greatest return and the greatest risk. The NewYork Stock
Exchange index was never selected in this set of runs. The Morgan Stanley index was often selected as a means to lower
various risk measures.

4. Monte Carlo simulation

Crystal Ball simulation software was used to evaluate results. The difference between the optimizationmodel inputs and
the inputs for Monte Carlo simulation was that the Monte Carlo simulation modeled a full year of daily changes for each
portfolio (245 trading days). This was expected to provide greater accuracy. Further, logistic distributions were assumed in
theMonte Carlo runs, as Crystal Ball says to use normal for n > 30, butwe have amuch larger n, andwewant the distribution
to have fat tails. The results for the simulations are given in Table 6.

In Table 6, optimal solutions are shown in bold. Simulation results were consistent with the theoretical outcomes. As
should be the case, the diagonal is the optimal solution for the first nine models. Clearly maximizing return came with a
high degree of risk, as indicated in the solution’s high variance. This also resulted in the highest value-at-risk calculations,
and the lowest probability of not losing money. The greatest probability of retaining the original investment was generated
by the solution designed for that very purpose. In the case of the chance constrained model, the bold figure demonstrates
that the chance constraint is binding, yielding the greatest return subject to a 0.6 probability of retaining at least 90% of the
initial investment.

Had the normal distribution been used to generate portfolios, the solutions maximizing return and minimizing variance
would have been the same as given in Table 5. The other solutions are given in Table 7.

The results from simulation (assuming logistic outcome in the post-bubble period) are shown in Table 8.
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Table 8
Simulated post-bubble model annual return—normal.

Objective Return Variance VaR(0.99) VaR(0.95) VaR(0.90) Pr{>1} Pr{>0.95} Pr{>0.9}

Min VaR(0.99) 0.094 0.528 1.747 1.179 0.880 0.5584 0.5889 0.6188
Min VaR(0.95) 0.097 0.530 1.747 1.182 0.882 0.5597 0.5903 0.6201
Min VaR(0.9) 0.099 0.532 1.749 1.085 0.785 0.5540 0.5809 0.6075
Max Pr{E[Ret] > 1} 0.185 1.093 2.464 1.513 1.082 0.5794 0.6004 0.6210
Max Pr{E[Ret] > 0.95} 0.164 0.837 2.154 1.321 0.944 0.5806 0.6045 0.6280
Max Pr{E[Ret] > 0.90} 0.142 0.675 1.940 1.192 0.854 0.5775 0.6041 0.6302
CC {Pr > 0.6[Ret > 1]} 0.153 0.746 2.035 1.249 0.893 0.5703 0.5929 0.6152

The point we are emphasizing is that the solutions generated assuming the logistic distribution would have yielded less
loss as measured by the value-at-risk. Using the VaR level of 0.99, there is practically no difference. But at the 0.90 level, the
amount that would have been lost at the 90th percentile level would have been worse 10% of the time. Thus we assume that
the logistic distribution would have saved investor’s money in the period of dismal return.

5. Conclusion

The primary outcome of this research confirms widely expressed opinions that financial return data has fat tails, and is
better fit by the logistic distribution than the normal distribution. The impact is that the risk is understated when assuming
the normal distribution.

VaR is a useful concept in terms of assessing probabilities of investment alternatives. It is a point estimator, like the
mean (which could be viewed as the VaR for a probability of 0.5). It is only as valid as the assumptions made, which include
the distributions used in the model and the parameter estimates. However, VaR and CVaR provide useful tools for financial
investment. Monte Carlo simulation provides a flexible mechanism to measure value at risk for any given assumption.

This paper focuses on the tradeoffs between two approaches to optimize return subject to constraints on risk: conditional
value-at-risk and chance constraints. We controlled for random numbers, but simulating such a complex model makes
replication problematic. We utilized Crystal Ball to establish the best fit distribution, finding logistic best in most cases. This
matched our expectations, in that it includes the ability to fatten tails. The student-t distribution had the second best fit in
most cases, and had the best fit for the Chinese index in the pre-bubble data, while normal and lognormal were either third
or fourth in all cases. We did not check the power-law distribution, which Hubbard [1] argues is better, because Crystal Ball
does not have that distribution in its palette of distributions. One of the most difficult problems was including correlation,
which is very important in investments of this type. While Crystal Ball has the ability to correlate, it is difficult to correlate
across 245 days over 5 variables. (Real problems would of course have many more investment alternatives available.) We
checked the fit provided, and found it to be reasonable.
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