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Abstract-This paper compares multlattrlbute decision analysis under condltlons of partial m- 
formation and ordmal input Difficult declslons based on partial mformatlon usually are dealt with 

through obtaining more precise input mformatlon The purpose of this paper 1s to present a technique 

for systematically explormg the entlre region wlthm weight bounds established by ordinal input data 
The center of mass of the product of weights and utlhtles 1s used Some conslderatlon of sensltlvlty 

analysis for this problem 1s presented @ 2001 Elsevler Science Ltd All rights reserved 

Keywords-Multlattrlbute declslon analysis, Partial mformatlon, Ordmal preference, Simple 

multlattrlbute rating theory (SMART) 

1. INTRODUCTION 

Selection models are an Important field within attribute analysis This area includes multlat- 

tribute utlhty analysis (MAUT [1,2]), th e simple multlattrlbute rating techmque (SMART [3,4]), 

analytic hierarchy process [5], and other apphcatlons These methods use cardinal weight input 

information 

In multlattrlbute declslon makmg, the derivation of weights 1s often a central step m ehc- 

ltmg declslon-maker preferences [6] The dlfficultles m assessmg preference weights have been 

widely noted [7-91 Exlstmg methods try to mfer human preferences based on exact statements 

and evaluations-regardless of whether the humans mvolved have a clear understanding of the 

questions that they are asked Weber [lo] argues that declslon-maker preferences are rarely struc- 

tured enough to allow the successful apphcatlon of most decision analysis methods Klrkwood 

and Sarm [ll] presented an approach to use partial weight and utlhty mformatlon as a means to 

weed out clearly mferlor alternatlves before mvestmg thorough analysis on the more attractive 
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United States Information Agency Neither of these orgamzatlons 1s responsible for the views expressed 
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slternatlves Podmovskl [12] gave four reasons why precise evaluation of tradeoffs may often be 

difficult or even lmposslble 

(1) mformatlon about the relative importance of criteria may be msufficlent, 

(2) tradeoffs may be different for different levels of criteria values, 

(3) the problem may be analyzed from different perspectives, or 

(4) different experts may specify different tradeoffs 

Ku-kwood and Corner [13] suggested that the use of approximate weights would smlphfy decl- 

slon analysis, smce detailed ehcltatlon of weights can be both time consummg and mconslstent 

Sensitivity analysis of weights 1s often Insightful [14,15] Hauser and Tadlkamalla [16] argued 

that the analysis of mconslstency may reveal useful mformatlon regarding the overall importance 

of some uncertain Judgements 

The centrold approach [17-221 uses ordinal mput mformatlon about relative weights rather 

than cardinal mput as used m MAUT and SMART Ordinal mput mformatlon IS expected to 

be more robust While less precise numerically, the ability of humans to state ordinal lankmg 1s 

considered more reliable than precise ratio statements of input [23] 

The linear utlhty function model used m SMART and centrold approaches 1s 

Maxlmlze WJ %J I vz = 1 to n, (1) 
j=l 

where wI 1s the scaling value (weight) assigned to the Jo” of k crlterla, and uy 1s the utlhty 

for alternative z on criterion J The selection declslon 1s to identify which of the 11 alternatives 

have the maximum value function This value function also can be used to rank older the n 

altei natlves 

SMART and AHP use the same overall model, but duffel m how estimates of the model compo- 

nents wJ and uy are determined SMART allows the decision maker to estimate both wj and T_L,~ 

directly on a O-l scale Edwards and Barron [19] presented swmg weighting m the SMART 

approach, usmg the same model described above, but based on a controlled means of estimating 

the criteria weights wg AHP uses elgenvalues of ratlo palrwlse comparisons for both wI and uZ3, 

yielding estimates ranging between 0 and 1 

Solymosl and Dombl [22] presented a technique using mteractlve ehcltatlon of preference 

weights among pairs of criteria The core of the method 1s that preference mformatlon among 

criteria provides knowledge about the bounds of specific weight values They used the centrold 

of this bounded area as a likely estimate of true weights The centrold method (SMARTER, 

m [19]) uses the same overall model as SMART, only usmg ordinal input mformatlon Maximum 

error 1s mmlmlzed While contmuous weight estimation methods, such as multlattrlbute utlhty 

theory models or analytic hierarchy models, would be expected to be more accurate estimators 

If preference mput were accurate, the centrold approach 1s based on sounder Input, and 1s less 

subject to the errors introduced by inaccurate weight assessment Flores et al [24] found that 

the centrold approach was useful when there were four or more criteria bemg considered, when 

criteria were close m relative importance, and when time available for analysis was short 

There IS an important issue that has not been examined and implemented until now Although 

the centrold approach considers bounds on specific weight values, it uses the centrold pomt of 

weights only Estimation of this centrold pomt 1s only one possible way to use mformatlon about 

the configuratlon of the bounded area In this paper, we first compalatlvely demonstrate SMART, 
then centrold, and then a new method usmg ordinal mput mformatlon about weights as well as 

utlhty measures on each criterion 

The purpose of this paper 1s to extend the centrold approach to explore the entIre region 
wlthm weight bounds based on ordinal input, and to examme sensltlvlty analysis in centlold 

models consldermg utlhtles This may allow deeper evaluation of existing alternatives The 
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paper also examines the Improvement of values m the current condltlonal utlhtles of existing 

alternatives needed to raise alternative performance to the level where it 1s clearly preferable to 

the other alternatives 

2. SMART 

The simple multlattrlbute rating technique uses a linear additive model to estimate the value 

of each alternative as discussed above The method begins with ldentlfymg the decision and the 

responsible decalon-maker (Step l), the issues important m the decision (criteria, Step 2), and the 

alternatives available (Step 3) Each criterion’s measurement scale 1s established m Step 4, along 

with measures as given m the table above Step 5 1s to eliminate dominated alternatives (one 

alternative dominates another If its performance 1s at least as good as the dominated alternative 

on all criteria, and better on at least one criterion) Step 6 1s to develop single-attribute utlhtles, 

reflecting how well each alternative does on each criterion In Step 7, swing weighting 1s applied 

to determine weights for the linear additive model This operation begins with rank-ordering 

criteria, consldermg their measurement scales The decision-maker 1s asked to compare two 

criteria, beginning with ldentlfymg which criterion would be most attractive to improve from 

the worst attainment considered to the best attainment considered This provides a basis for 

rank-ordering crlterla (after consldermg scale) Step 8 would be to obtain estimates of relative 

weights by comparing the most important criterion with each of the others, by asking the declslon- 

maker to assess how important the other criteria would be should the most important criteria be 

worth 100 Weights are obtained by normahzmg (sum the assessed values, and divide each value 

by the sum) The last step (Step 9) of the swing-weighting approach 1s to obtam values for each 

alternative using the formula given above (sum of products of each weight times utlhty values 

for each alternative) 

We use an example decision of siting a new faclhty There are seven alternative locations 

available, with four criteria important to the decision Cost (m mllhons of dollars) 1s to be 

mmlmlzed Growth potential (m thousands of potential customers) and slulled labor available 

are to be maxlmlzed Transportation avtilablhty 1s a subjectively measured concept The matrix 

of alternative attainments 1s presented m Table 1 

Table I 

New York 13 6 500 3000 

Los Angeles 12 8 600 3600 

Phoenix I 116 I 480 I 2800 

Houston 114 450 2900 

Denver 112 370 2600 

Dallas 10 9 350 2400 

Nashville 10 6 280 1200 

Transportation 

great 

great 

fair 

poor 

As apphed to the declslon problem given above, the decision 1s to select a site for a decision 
maker The objective hierarchy 1s simply the four criteria The seven alternatives given m the 

table above identify the alternatlves, as well as the dlmenslons by attributes matllx The Los 
Angeles site dominates the New York s&e (LA is better on cost, growth potential, and skill 

availablhty, while the two alternatives have equal ratmgs on transportation avalablhty), so the 

New York site could be eliminated However, the declslon-maker might be interested m seeing 

the relative performance of New York, so we will keep the New York site for analysis 
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Step 6 1s to develop angle-dlmenslon utlhtles For the first three cntena, data 1s provided 
Anchors based on the smallest and largest expected values to be considered can be used to es- 

tablish ranges, which are then used to convert measures mto utlhtles Appropriate adjustments 

of signs can reflect measures to be maximized and mmlmlzed Transportation avallablhty mea- 

sures provided were subJective, without numeric values These can be transformed mto utlhtles 

categorically A rating of great could be assigned a utlhty value of 1 0, a rating of good a utility 

value of 0 8, a rating of fair a utlhty value of 0 3, and a rating of poor a utlhty rating of 0 This 
would yield the final set of single-attribute utlhtles for the decision problem presented m Table 2 

Table 2 

Alternative cost Growth Sk111 Transport 

New York 0 175 08 06 10 

Los Angeles 0 275 10 08 10 

Phoenix 0 425 05 04 08 

Houston 0 450 04 05 08 

Denver 1 0475 1 025 1 025 1 08 1 

Dallas 1 05125 1 02 1 02 1 03 1 

Nashvllle I 0550 I 01 I 01 I 00 I 

3. DEVELOPMENT OF SMART WEIGHTS 

The last required data 1s the set of relative weights for the four criteria The process of swmg 

weighting would begm by consldermg the possible range of measures for all criteria, and asking 

m turn which criterion would be most important to move from Its worst measure to Its best 

measure (see Table 3) 

Table 3 

Criterion 

Cost ($ million) 

Worst 

$15 million 

Best 

$7 million 

Growth potential 200,000 600,000 

Skilled labor avallablhty 1000 4000 

Transportation Poor Great 

In this case, the declaon-maker might thmk that moving cost from $15 mllhon to $7 mllhon 

was the most important of the four criteria Given that cost 1s the most Important cntenon, 

the remammg three crlterla are consldered m turn Moving growth potential from 200,000 to 

600,000 might be considered as more important than the other two remammg crlterla Finally, 

the last two crlterla are compared m a slmllar manner For our purposes, we might assume that 
moving skilled labor avallablhty from 1000 to 4000 was considered more Important than movmg 

transportation avallablhty from poor to great These evaluations yield the rank order 

‘Wcost > Wgrowth > %klll > ‘Wtrans 

The next step 1s to determme the relative weights This 1s done by asking the declslon maker 

what the relative importance of movmg the other three crlterla from their worst to best measures 

would be If wCost were 100 A possible response might be as presented m Table 4 
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Table 4 

‘Wcost 100 

wgrowth 50 

wsklll 25 

Wrans 12 

Table 5 

W,klll r- 25/187 1 0 134 

wtrans 1 12/187 1 0064 

This would yield a total of 187, which could then be divided mto each of the measures to obtam 

a normahzed set of weights that sum to 10, as shown m Table 5 

The last step of the SMART method with swing-weightmg is to apply the original model to 

calculate the weighted overall utility (value) for each alternative This consists of multiplymg 

the criterion weight times the alternative’s criterion utility over all four criteria, and summing 

The results for this example are presented m Table 6 These value functions allow rankmg of 

the seven sites Los Angeles is a clear first choice, followed by Houston and Phoenix, which have 

almost identical value functions New York, while a dommated solution, is much preferred to 

Denver, Dallas, and Nashville 

Table 6 

AlternatIve 

New York 

cost 

0 175 

‘Wcost 

0 535 

Growth 

08 

wgrowth 

0 267 

Sk111 %ktll Transp Wrans Value 

0 6 0 134 10 0064 0.452 

Los Angeles 0 275 0 535 10 0267 08 0 134 10 0 064 0.685 

Phoemx 0 425 0 535 0 5 0267 04 0 134 08 0 064 0.4857 

Houston 0 450 0 535 04 0267 0 5 0 134 08 0064 0.4668 

Denver 0 475 0 535 0 25 0 267 0 25 0 134 08 0064 0.405 

Dallas 0 5125 0535 0 2 0267 02 0 134 03 0 064 0.374 

Nashville 0 550 0535 0 1 0267 0 1 0 134 00 0064 0.334 

Weights can vary a great deal by decision-maker In this case, there was a moderate dispersion 

of weights We check two other cases followmg Kirkwood and Corner [13] one with all four 

criteria weighted equally, and one with greater dispersion m weights For the case with four 

equal weights over criteria, see Table 7 

In this case, Los Angeles remams the first choice, but now the dommated site at New York is 

second m preference The relative order of the other five alternatives remams the same 

A more diverse set of weights might assign u&II = 4wtransr Wsrowth = &&ll, and wcoSt = 
&growth, yielding a normahzed set of weights shown m Table 8 

These weights would yield value functions as shown m Table 9 

Note that now the six nondommated alternatives are all very close in value, wrth Houston 

holdmg d shght edge over Los Angeles, Phoemx, Nashville, Dallas, and Denver m turn New 
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Table 7 

Table 8 

Table 9 

0 25 0 769 

0 25 0 531 

0 25 0 537 

0 25 0 444 

0 25 0 303 

0 25 0.187 

0 012 

0 012 

0 012 

0 012 

0.447 

0.426 

0 436 

0 438 

York 1s a great deal worse m value than the other SIX sites With this set of very diverse weights, 
the relative ranking has been reversed 

4. CENTROID 

The centrold method 1s identical to the SMART method, with the exception that weights are 

assessed based on the rank order of crlterla Importance (conadermg scale) The centrold method 
assigns weights as follows, where w1 1s the weight of the most Important objective, w2 the weight 
of the second most Important objective, and so on For k obJectives, 

Wl = 
(1 + l/2 + l/3 + + l/lc) 

w2 = 
(0+1/2+$+ + l,k) ’ 

k 
3 

wk = 
(0+0+ + 0 + l/lc) 

k 
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The sum of these weights will equal 1 0 The more objectives that exist, the less error this 
approxlmatlon mvolves For two ob,Jectlves, zu1 = (1+1/2)/2 = 0 75 and w2 = (0+1/2)/2 = 0 25 

While this would mmlmlze the maNmum error (weight extremes would be WI = 1 and w2 = 0, 

w1 = 0 5 and wp = 0 5), with only two objectives the error could be substantial With more 
objectives, the error For ranked objectives ~111 be much less Smgle-attribute utlhtles for each 
crlterlon could be obtamed m the same manner as with SMART 

For this example, consldermg the range of possible performance levels, the rank order of the 

four criteria would be 

Cost > Growth > Sk111 > Transportation 

Weights would be estimated by finding the centrold, the mean of the four extreme points (see 

Table 10) 

Table 10 

cost F 10 
I 

I 

0 25 

( 0 52083 

Growth Skdl 
I 

+-I-+ 
0.27083 I 0.14583 1 0 0625 

Transport 

These weights could be applied directly as m SMART (see Table 11) The rank order of 
alternatives obtamed m this case are identical to those obtained with the mltlal weights m the 

SMART example 

Table 11 

Denver 0 475 0 521 0 25 0 271 0 25 0 146 08 0 062 0.401 

Dallas 0 5125 0 521 02 0271 02 0 146 03 0 062 0 369 

Nsshwlle 0 550 0521 01 0271 0 1 0 146 00 0 062 0.328 

5. CONSIDERATION OF CONDITIONAL UTILITY RANGE 

Up to this pomt, what we have presented has been done before by studies referenced We now 

extend this work by consldermg condltlonal utilities The analysis based on ordinal mput can be 
carried one step further, by consldermg the possible ranges of condltlonal utlhtles on attributes 
For the seven alternatlves under conslderatlon (with Al representmg New York, A2 Los Angeles, 

etc ), we denote 

U(A), V z = 1 to 7 1s the overall utlhty for each alternative usmg formula (1) above, 

U,(A& Va = 1 to 7, V/3 = 1 to 4 1s the condltlonal utlhty of attrlbute 3 for alternatlve 2, 
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subject to the following constraints 

We assume that the decision-maker has carried out the ordmal ranking of attrlbutes (consldermg 

attribute scales) and reached the conclusion that attrlbute 1 1s the most Important, attribute 2 1s 

second-m-importance, attribute 3 1s third-m-importance, and attrlbute 4 1s the least important 

(If otherwise, we could simply renumber the attributes, so m further conslderatlon, the attrlbute 

with a smaller number will always be the attribute with a higher weight ) Then, the permlsslble 

values of attribute weights are as follows 

Expression (3) actually determmes some bounded subset of weights obtamed by the “narrowmg” 

of an mltlal set (2) based on additional mformatlon about the ranking of attributes The extreme 
points for such a bounded subset of weights are 

{w1 = 1, w2 = 0, w3 = 0, w4 = O}, 

{ 

WI = f , w2 = ;, w3 = 0, w4 = 0 

1 

) 

{ -, 1 -, 1 -, 1 1 1 1 1 Wl = w2 = w3 = w4 = 

3 

0 

3 3 

> , { 
WI = 4’ W‘J = 4’ w3 = 4’ w4 = 4 

> 

Taking mto conslderatlon that the weights sum to one, and therefore, 

w4 = 1 - (w1+ w2 + wg), 

it 1s possible to geometrically represent this bounded subset of weights m three-dlmenslonal 

space, where A{l, O,O}, i3{1/2,1/2,0}, C{1/3,1/3,1/3}, and 0{1/4,1/4,1/4} ale the vertices 

of a triangular pyramid In the three-dimensional space of weights {WI, ~2, wg}, each current 

point {WIT, ‘W2T, w3T) wlthm a triangular pyramid ABCD represents a permlsslble combmatlon 

of weights The overall utlhty (for currently analyzed alternative A,), correspondmg to this point, 

could be found as 

UT(A) = w1T * ‘1Llz + w2T * u22 + w3T * U3, + [l - (WIT + w2T + w3T)] * ~4~ (4) 

As 1s known from linear programmmg, a linear objective function attams Its maximum and 

mmlmum values at the boundarles of a feasible region For the case under conslderatlon, linear 

form (4) could achieve its maximum and mmlmum values m the vertices A, B, C, 01 D (or m 

cease of multiple optimal solutions at sides or planes connectmg the pomts m questlon) 

Therefore, knowmg the values of overall utlhtles m extreme pomts A, B, C, and D, we can 

also estimate the maximum and mmlmum level of overall utlhtles for any concrete values of 

condltlonal utlhtles ~~1, 2~~2, ~~3, and u,4 for all possible weights consistent with the ordinal 

ranking of attributes, 1 e , for all possible weights detelmmed by expression (4) 

Therefore. let us first estimate 

VA = uzl, uB= 
%l + %2 

2 , 

UC = 
2121 + %2 + %3 %l+U,2+%3+%4 

3 ’ 
UD = 

4 

We label the entire mterval of overall utlhtles covermg all possible combmatlons of weights for 

the case of ordmal ranking as the “uncertamty interval” This corresponds to all pomts wlthm 
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triangular pyramid ABCD The term “uncertamty interval” reflects the uncertainty m overall 

utrhty caused by the lack of knowledge about the actual values of weights Thus interval may be 

represented on a numerical axis as a numeric mterval [Ut, UH], where the interval’s bounds UL 

and UH equal accordmgly to maximum and minimum value of linear overall utility form (4) In 

other words, UL and UH are the values of current overall utrhty m the lowest and highest point 

of the uncertainty interval (m the extreme point with the highest current value of utrhty) for the 

alternative under analysis 

In accordance with the above, we can write down the followmg expressrons 

UH = m={UA, UB, UC, UD}, i./ u = mln{UA, UB? UC, UD) (5) 

We can also estimate the value of overall utrhty m the center of the uncertainty mterval 

u 

M 
= UH -uL 

2 (6) 

The mformatron about the estrmated value may be very valuable to the decrsron maker from the 

point of vrew of both deeper understanding of an mrtral srtuatron and ways thus srtuatron could 

be improved Let us demonstrate for the above example 

First, let us calculate overall utrhtres using (5) and (6) for all alternatives 

For Alternative New York 

uff = 0 6438, 

For Alternative Los Angeles 

UH = 0 7608, 

For Alternative Phoenix 

UH = 0 5313, 

For Alternative Houston 

UH = 0 5375, 

For Alternative Denver 

UH = 0 4750, 

For Alternative Dallas 

UH = 0 5125, 

u, = 0 1750, UM = 0 40% 

U, = 0 2750, Uhf = 0 5219 

U, = 0 4250, UM = 0 4782 

U, = 0 4250, UM = 0 4813 

UL = 0 3250, UM = 0 4000 

UL = 0 3031, u,+f = 0 4078 
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Table 12 

For Alternative Nashville 

UH = 0 5500, UL = 0 1875, UM = 0 3688 

Ranking alternatives by the value of UM (the center of uncertainty interval) provides almost 
the same results as ranking by centrord points The only difference IS the alternatrves Denver 
and Dallas changed places See Table 12 At point A, Nashville 1s preferred At pomts B, C, 
and D, Los Angeles 1s preferred Note that New York 1s dominated by Los Angeles, but that the 
other six alternatives are all nondommated 

Uncertainty intervals can be developed for each alternative These uncertainty intervals provide 
a means for a deeper understanding of the current situation Although alternative Los Angeles 
seems to be better than the others, rt cannot be guaranteed that this alternative will be the 
best under all possible sets of weights satisfying the ordinal specrficatron If a decrsron-maker 1s 
able to clearly choose among exrstm, u alternatives, there 1s no need m further analysis On the 
other hand, rf there 1s some hesrtatron, our approach proposes ways for improvement of a current 
alternative See Table 13 

Table 13 

Let us assume that decrsron-maker wishes to improve alternative Los Angeles m such a way 
that rt will become absolutely the best chorce Followmg linear programming sensrtrvrty analy- 
sis, consider changing only one of the values of condrtronal utrhtres ~21, ~22, ~23, and ~24 We 
eliminate alternative New York, as rt 1s dominated by Los Angeles From analysis of the uncer- 
tainty interval for alternative Los Angeles, we can make two important conclusrons The first 
1s posrtrve-after ehmmatron of New York, points D, C, and B for alternative Los Angeles are 
located higher than the highest points of the uncertamty intervals for all remaining alternatives 
Therefore, only point A needs to be “raised” to provide an absolute dommance for alternatrve 
Los Angeles (points B, C, and D will never “descend”, since, m accordance with (l), they are 
the increasing functions of condrtronal utrhtres) 

The second conclusron IS negative-since the lowest point of the uncertainty interval IS point A, 
it may be “raised” only by the way of increase m condrtronal utility ~21 (USA = 74x1) Therefore, 
no improvements m growth, skill, and transport will make alternatrve Los Angeles absolutely 
better than the other five alternatives The only way to ensure strict dommance for alternatrve 
Los Angeles 1s to cut its cost 

For the currently analyzed alternative, let us desrgnate U,,, the value of maximum possible 
overall utility for all other alternatives (the hrghest point of all uncertamty intervals for all alter- 
natives excluding the current one) After the prehmmary ehmmatron of dommated alternatrve 
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New York, alternative Nashville will have the greatest value of UH among all remammg alter- 

natives (excludmg the current alternative Los Angeles) Therefore, U,, = UH (for Nashville) 

= 0 5500 Although alternative Nashvrlle was ranked last, this alternative is the toughest for Los 

Angeles to dommate This is because the rank order of extreme points for Nashville IS opposite 

to that of Los Angeles 

The mcrease Au, of conditional utility ~1, necessary to provide an absolute dominance of 

alternative Los Angeles over all the other ones, may be found from the expression 

UAO + Au, > ~,nax (7) 

Therefore, the mmimum required value of this mcrease Aui~ is determmed as follows 

AU~G = U,,, - UAO = 0 5500 - 0 2750 = 0 2750 (8) 

For the newly generated alternative, we calculate the overall utlhtres at the extreme pomts 

VA = u,,,,, = 0 5500, 

u, 
0 2750 

= UBs + - Au, = - = 2 0 6375 + 2 0 7750, 

UC UCQ - Au1 
0 2750 

= + = 06917+ - = 3 2 0 7834, 

UD = uoc + - Au, = 4 0 7688 + 
0 2750 
2 = 0 8376 

After this improvement, alternative Los Angeles would have the level of utihty equal to 0 5500 

at the lowest point of its uncertamty mterval This will provide a strict dommance over all the 

other alternatives 

We can also use the formulation to calculate 

utlllty=l- [(coy7)], the correspondmg required value of cost, 

cost = 15 - 8 * utihty = 15 - 8 * 0 5500 = $10 6 mllhon 

If alternative Los Angeles has the value of cost 10 6 mllhon dollars (as, for example, alternative 

Nashville), it will become absolutely the best choice 

This case mvolved limited specific changes The number of changes, m general, can mvolve a 

number of degrees of freedom For instance, m the case of the Nashville site, for weight set A It 1s 

the preferred choice (it has the lowest cost) However, it is the poorest performer on each of the 
other three criteria For the other extreme pomts, the requued improvement could come from 

any of these three criteria (or for that matter, improvmg the Nashville site’s cost even more) 

At weight set B, there is a 0 5 weight for both cost and growth Either or both of those 
measures could be improved for the Nashville site, such that the overall value for this site would 

equal or exceed the highest other alternative for this weight set (the Los Angeles site, with 

a value of (0 5 x 0 275) + (0 5 x 1 0) = 0 6375) Moving on to weight set C(1/3,1/3,1/3,0), 

Nashville currently has a value calculation of 0 250, which is the worst of all alternatives The 

best alternative score at this set of weights is for Los Angeles, at 0 692 Improvement on no 
smgle criterion would be sufficient to make Nashville have as high a score as Los Angeles An 
mfimte number of combmatlons of improvement would Similar results occur for weight set D 

(l/4,1/4,1/4,1/4) 

6. CONCLUSIONS 

The present article’s mam obJective IS to elaborate a new approach extendmg estimation of 

a centrold point for the product of weight times utrhty A secondary purpose is to use this 

framework to show how sensitivity analysis could be conducted 
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Ehcltatlon of weights 1s usually a time consummg process and 1s often controversial, as well It 

1s difficult to derive exact weights, and it 1s also difficult to determine consistent boundarles for the 

intervals wlthm which actual weights are located In such circumstances, ordmal rankmg could 

be a reasonable compromise that uses mput of consistent mformatlon and often provides output 

rank order of alternatlv& similar to the rank order based upon the use of cardinal mformatlon 

The proposed approach provides the declwon-maker with more mformatlon about the degree 

and sources of uncertainty with respect to a preferred solution It adds mmlmlzatlon of the 

maximum error by estlmatmg the value of an overall utlhty m the center of the uncertainty 

mterval It also provides the declslon-maker with mformatlon about the posltlons of all extreme 

pomts for all competing alternatives If a declslon maker 1s hesitant about choosmg among 

exlstmg alternatlves, the proposed approach allows determmatlon of which improvements m the 

values of existmg alternatives’ parameters will result m mcreasmg its performance to the level 

where this alternative becomes obviously preferable to all the other alternatives 
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