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Abstract-While profit maximization is one important objective in this decision domain, other 
objectives are important as well. This paper discusses multiple criteria and their respective objectives 
in construction bidding, and presents a bidding framework which recommends a pairwise comparison 
procedure to generate criterion weights and a linear transformation procedure to calculate relative 
scores for bidding alternatives. This hybrid multicriteria method is illustrated and evaluated using a 
set of past construction bids. The proposed bidding system is found to yield substantially improved 
solutions when work volume is highly important relative to expected profit. The corresponding 
decrease in the profit function is identified, allowing evaluation of expected profit foregone, in order 
that improved multiattribute functions might be attained. @ 2001 Elsevier Science Ltd. All rights 
reserved. 
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1. INTRODUCTION 

Competitive bidding presents numerous tradeoffs to those who submit bids for work on con- 

struction projects. If a bid is relatively high, then the probability the bid will be accepted is 

relatively low, thus resulting in: low expected revenues, low equipment and personnel utilkzation, 

and the opportunity for a competitor to build his/her standing in the industry. However, such a 

bid, should it be accepted, will also result in higher profits, less chance of a loss resulting from 

unforeseen costs, and the ability to provide a higher level of quality to the customer. Hence, 

multiple criteria are affected by the determination of a bid amount, and there are serious trade- 

offs that need to be considered. The purpose of the research described in this paper has‘been to 

work toward developing a workable, usable, construction-oriented system that provides for the 
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integration of contextual factors and decision criteria and which is supported by thorough and re- 

liable data analysis. The ultimate goal is to provide decision makers in the construction industry 

with effective multicriteria support for pricing the services of their firms. Working toward that 

goal, this paper describes, demonstrates, and evaluates a quantitative procedure for multifactor, 

multicriteria bidding optimization. 

This research should be of interest to the many decision makers (DMs) who face these tradeoffs 

regularly. Nearly all public (and a substantial amount of residential) construction projects involve 

competitive bidding, and construction is a major industry throughout the world. In the United 

States, for example, construction activity accounted for nearly five percent of the country’s gross 

national product in the 1980s according to reports of the Bureau of Census (l] and the Economic 

Report of the President [2]. Because of this, a large body of literature is devoted to various aspects 

of competitive bidding, from both descriptive and prescriptive perspectives [3]. Understandably, 

effectiveness in competitive bidding is crucial to the futures of many firms, as bidding too high 

lowers the probability of obtaining work, while bidding too low can guarantee fiscal failure. 

Numerous models have been proposed for supporting bidding since Friedman [4] first developed 

a quantitative bidding optimization model in 1957. Yet, practitioners have made relatively little 

use of those models, as has been pointed out by Rothkopf and Harstad [3]. They argue that 

the gap between theory and practice generally is a result of the need for enriched models that 

take context into consideration and move toward realism. Similarly, Rothkopf and Engelbrecht- 

Wiggans [5] have pointed out that flawed models give flawed results. It stands to reason, then, 

that models intended solely to maximize profit will be poorly accepted by actual bidders, who 

are typically concerned about numerous criteria. 

1.1. Multicriteria Nature of Bidding 

Multiple criteria involved in bidding have been discussed for decades. In the first known work 

formalizing bidding optimization, Friedman addressed the existence of multiple bidding crite- 

ria by listing objectives of profit maximization, maximizing return on investment, minimization 

of loss expectation, minimizing competitor profits, and maximizing operational continuity [4]. 

Boughton addressed these multiple objectives as well [6]. Not unexpectedly, he found, in a sur- 

vey of 126 construction firms, that profit maximization was the most frequently used bidding 

objective, although it was by no means the only objective of importance. Carr addressed re- 

turn on investment and production criteria, although profit maximization was the only objective 

incorporated into his model [7]. In a later study, Carr incorporated opportunity costs into a 

profit-based bidding approach [8]. Finally, although not mentioned explicitly in the literature, 

winning the bid is an implied objective for many contractors, including the authors and firms 

witnessed by the authors. This objective may or may not represent the aggregation of other 

objectives, such as resource utilization and maintenance of cash flows, but nevertheless is not, 

and should not, be neglected in actual bidding practice. 

Actual applications of multicriteria analysis to competitive bidding are limited, however. En- 

gelbrecht-Wiggans developed a descriptive model analyzing the simultaneous maximization of 

profit and minimization of two forms of regret [9]. The first general prescriptive applications of 

multicriteria methodology in competitive bidding are found in [l&12]. Ahmad proposed a two- 

stage approach, based on multiattribute utility theory (MAUT), for the decision of whether or 

not to bid on a project, and then the decision of what markup should be used. Unfortunately, the 

elicitation of utility functions, especially multiattribute functions, is complex and time consuming 

for DMs. The approach proposed by Seydel and Olson for determining optimal markups is 

based in part of the analytic hierarchy process (AHP), which was introduced by Saaty [13]. 

Computations are simplified, and there is less burden on the DM, although the approach relies on 

more restrictive assumptions than does Ahmad’s multiattribute utility approach. Subsequently, 

Ahmad and Minkarah [14] and Hegazy et al. [15-171 have implemented various aspects of these 

multicriteria bidding approaches in computer software they have made available. 
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1.2. Scope of Consideration 

Besides the studies indicated above, there have been numerous other studies addressing com- 
petitive bidding in a variety of applications, as discussed in an extensive survey by Engelbrecht- 
Wiggans [18]. To aid in the analysis of the many existing bidding applications, King and Mercer 
developed a classification scheme to summarize problems addressed by this body of literature [19]. 
According to this scheme, bidding situations are classified according to four factors: whether bid- 
ding is open (as in estate auctions) or closed (sealed bids), means of bid selection (high bid, low 
bid, or other), the existence of nonprice competition (all bidders meet the same specifications, 
or propose alternative products), and the certainty with which the value of the item being bid 
upon is known. The common construction bidding situation, which is the focus of this research, 

is one in which sealed bids are used, low bid price is selected, all bidders meet the same speci- 

fications, and project costs are uncertain. (Note that, although increasingly more contracts are 

being awarded according to factors other than price, awarding contracts to the lowest bidder is 

still far from having been phased out. Such things as bidder prequalification and rigid specifi- 

cations, especially in public works construction, have traditionally served to represent nonprice 

attributes. In essence, these criteria are represented as constraints, rather than 8s objectives, 

in the bidding process. While there are many benefits to be achieved by incorporating these 

other criteria as objectives, doing so is reserved for future research.) This research is intended 

to provide an extension of the method developed by Seydel and Olson by integrating it into a 

general multicriteria bidding framework and by illustrating and evaluating that framework using 

actual construction bidding data. Note that, while auctions can be modelled either one at a time 

or as a sequence of auctions (see, for example, the work by Broemser [20] and Knode and Swan- 

son [21]), this research addresses construction bidding on the basis of one project at a time. It is 

also assumed that screening (if any) of projects, as proposed by Ahmad [14] to avoid unfruitful 

estimating/bidding, has already taken place. 

2. GENERAL BIDDING MODEL 

Let the decision maker of concern be referred’to herein as the subject bidder, and let bids 
being submitted by the subject bidder’s competitors be referred to as competing bids. Then, 
for the subject bidder, the bidding decision can be modelled as an unconstrained optimization 
problem. This problem is stochastic in that the outcome depends upon the values of two random 
variables-the lowest competing bid amount, and the actual cost or value of the object for which 

the bid is being submitted. If a single criterion were being considered, the objective would be 

to optimize the outcome of the bidding process for the given criterion. The typical approach to 

optimization, based upon Friedman’s work [4], is to seek to optimize the expected outcome (e.g., 
profit). Stated in general terms for the low bid wins situation, the objective is to determine a 
bid ratio M so as to 

Optimize E[Y(C, ML, M)] = A(C, M) Pr(Win 1 M) + N[l - Pr(Win ( M)], 

subject to resource limitations, where 

(1) 

M 

C 

ML 

(the decision variable) is the markup ratio, of bid to bidder’s estimated cost C,, 

(a random variable) is the ratio of actual to estimated cost, 

(a random variable) is the ratio of the lowest competing bid to the bidder’s 

cost estimate, 
Y(C, ML, M) is the outcome on the given decision criterion, 

A(C, M) is the outcome given the bid is accepted (bidder is successful), 

N is the outcome given the bid is not accepted (bidder is unsuccessful), and 

Pr(Win 1 M) is the bid acceptance probability. 
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Both the decision space (values of M) and the joint probability sample space (combinations 

of ML and C) are continuous. In practice, however, these spaces contain finite sets of positive 

numbers somewhere near one. The distributions of ML and C are generally not known, but 

must be estimated from empirical data. Several terms are expressed as ratios rather than as 

absolute measures, because the only link among historical data used to generate estimates for 

the distribution of ML is the cost estimate C,. Furthermore, dividing through by C, results in 

relationships that are independent of the cost estimates. While ML and C, are not necessarily 

independent, empirical studies by Hansmann and Rivett [22] and Kuhlmann and Johnson [23] 

were, nevertheless, unable to establish that there is a significant relationship between ML and C,. 

Therefore, relevant data should be analyzed on an ad hoc basis, as discussed briefly in the next 

section, in order to determine the extent of any such dependency. 

The probability of winning, Pr(Win 1 M), can be modelled as the probability of beating the 

lowest competing bid, following Hansmann and Rivett [22], Carr and Sandahl [24], Gunter and 

Swanson [25], and Mercer and Russell [26]. Required data are the bidder’s estimated costs for 

past projects, as well as the lowest competing bids for those projects. Prom this information, 

probability distributions can be estimated. Since Pr(Win 1 M) = Pr(ML > M), the acceptance 

probability for a bid amount M is equal to 1 - FL(M), and the nonacceptance probability is 

FL(M), where FL(M) is the cumulative distribution function of ML evaluated at M. 

In most of the bidding literature, the N term reflecting the outcome--essentially, the cost-of 

an unsuccessful bid does not appear. This is likely because the firm ordinarily receives no revenue 

for losing a contract, and prior costs for preparing the bid are typically sunk. The nonacceptance 

term is incorporated here to facilitate the ability to accommodate circumstances in which it 

might be desirable to model nonacceptance outcomes explicitly. Such circumstances would occur 

when it is possible to estimate unsuccessful bid outcomes including, but not limited to: second 

best (i.e., Plan B) alternatives; costs associated with replacing key personnel who leave the firm 

during slow periods; costs of relocation; and possibly costs of dissolving the firm. In order that 

the procedure to be demonstrated might be more easily followed, these costs are not explicitly 

considered herein, except to be included in the general multicriteria model in the next section. 

That is, for the purposes of the demonstration, N is assumed to have a value of zero. Nevertheless, 

some nonacceptance costs, such as those associated with the loss of key personnel, are addressed, 

although not modelled, by the simultaneous consideration of multiple criteria, as is done below. 

Certainly, future research is warranted in identifying and modelling nonacceptance outcomes, as 

they do exist and bidders are aware of them but the bidding optimization literature generally 

ignores them. 

2.1. Multicriteria Model 

When the above model is modified to incorporate multiple criteria, the problem can be ex- 

pressed in terms of the multiple objectives 

Optimize E [Y1(C,M~,M)] = A’(C,M)Pr(Win ( M) +N’[l - Pr(Win 1 M)], 

Optimize E [Y2(C,Mh,M)] = A2(C,M) Pr(Win 1 M) +N2[1 - Pr(Win I M)], 

(2) 

Optimize E[Ym(C, ML, M)] = A”(C,M) Pr(Win I M) + Nm[l - Pr(Win 1 M)], 

subject to resource and policy limitations, where m is the number of decision criteria. This can 

alternatively be expressed in terms of a, the decision maker’s multiattribute value function 

Maximize E[R(C,ML,M)] = R (A’, A2,. . . , A”) Pr(Win I M) 

+R(N’,N~,... , Nm) [l - Pr(Win ( M)], 
(3) 
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for i = 1 to m and subject to resource and policy limitations. The Ai and Ni are defined in 

terms of the multiple objective formulation. If the criteria exhibit additive independence, then 

E[R(C,ML,M)] becomes a weighted sum of the single criterion utility functions evaluated at 

the Yi(C,M~,M) as in [9]. I n such cases, multicriteria methods such as multiattribute value 

(MAV) analysis, and possibly AHP, can be appropriate for solving the problem, although neither 

of those is without its own problems. 

2.2. Criteria of Interest 

As indicated above, a number of criteria have been addressed in the literature, including 

margin per project, return on investment, exposure to loss, competitor profits, and operational 

continuity [4]; opportunity costs [B]; win regret [27] and loss regret [9]; and the potential for 

additional work [6,28]. For the sake of simplicity, let these ten criteria be represented by the 

three objectives of profit maximization, volume maximization, and regret minimization. 

In an actual decision situation, the DM may of course opt to consider fewer or additional 

criteria and may or may not wish to aggregate the criteria in the same manner as indicated here. 

Regardless of aggregation, no difference would be called for in the standardization and subsequent 

optimization procedures proposed herein. Nevertheless, there is a tradeoff to be considered in 

determining the level of aggregation to use. Reduced aggregation would lead to increased control 

over weight determination for the criteria. It could also lead, however, to greater dependencies 

among the criteria, possibly requiring more sophisticated means of analysis than what is being 

proposed here, since the assumption of additive independence would likely be violated to a greater 

extent. 

Profit Maximization. Margin per project and return on investment generally relate to the 

same amount of earnings, although the two are compared against different bases. Margin per 

project equals project profit, (M - C)C,, divided by actual costs, C . C,. Return on investment 

equals project profit divided by one of the measures of a given firm’s investment. Hence, max- 

imizing expected margin per project would yield the same value for the decision variable M as 

would maximizing the expectation for return on investment, because these objective functions 

vary only by the values of the constants used in the relationships. An optimal strategy, assuming 

a zero-valued nonacceptance outcome, for the profit maximization criterion would maximize 

E[Profit(C, ML, M)] = [(M . C,) - E(Cost)] Pr(Win 1 M), 

where E(Cost) = E(C) . C,. Note that this function has a stationary point for some positive 

value of [M-E(C)]. That is, expected profit increases with the value of M up to a certain point, 

after which the decrease in Pr(Win 1 M) more than compensates for resultant increases in M. 

Volume Maximization. As values of M decrease, bid acceptance probabilities, Pr(Win 1 M), 

increase. Then, as the chance of bid acceptance increases, so does the expectation that oper- 

ational continuity will be maintained. Furthermore, the opportunity for follow-on work (i.e., 

additional project related work) becomes greater with increased bid acceptance probabilities. 

Similarly, market share is likely to increase, and competitors’ profits are likely to be restricted if 

the subject bidder’s chances of bid acceptance increase. Finally, increased bid acceptance prob- 

abilities correspond to reduced expectations of regret from having bid too high. Hence, volume 

maximization might serve as a surrogate to these five criteria. Over the range of bid ratios the 

bidder is likely to consider, expected project revenue (volume, which equals M . C,) typically 

increases with decreasing values of M, as Pr(Win 1 M) increases. Maximization of volume would 

maximize 

E[Volume(ML, M)] = [Me C,] Pr(Win I M). (5) 

It might seem as though bidding as low as possible could lead to volume maximization as well as 

to maximizing the chance of winning the bid. If this were true, it would make the decision a trivial 
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one and would also allow volume maximization to serve as a perfect surrogate for winning the bid 

(or vice versa). In fact, maximizing the chance of winning is the same ss maximizing Pr(Win 1 M) 
and does occur as FL(M), and hence ML, gets smaller (i.e., bidding as low as possible). However, 

the expected volume function has a stationary point, which is illustrated in Figure 1. In this 

fairly typical example (where ML is normally distributed with a mean of 110% and a standard 

deviation of 5%), bidding below a markup of 10% below cost essentially guarantees winning the 

bid, while expected volume is maximized by bidding at cost (M = 100%). Pursuing a volume 

maximization objective corresponds, to an extent, to pursuing an objective of winning the bid. 

At a certain markup level, although a relatively unrealistically low one, these objectives diverge. 

In fact, pursuing the volume maximization objective could be viewed as pursuing winning, but 

with some sanity injected into the process. 

06 100 105 

Bid Ratio, M (SC) 

I ..’ 
..,..__ -- ._._-_ --- ..-._.. -..” 

--E(m ______~~)J 

Figure 1. Comparison of expected profit and volume functions. 

Both functions plotted in Figure 1 are, of course, sensitive to the distribution of ML, although 

E[Profit] will always be zero valued at M = 0. Furthermore, in all circumstances (and not 

surprisingly), the optimal markup for maximizing profit will be higher than that for maximizing 

volume. Not uncommonly, the stationary point of the expected volume function is less than 

one (lOO%), indicating the optimal bids for such projects are at amounts below cost estimates. 

Certainly, this conflicts with the profit maximization objective and should be unlikely to be 

witnessed much in practice. Note that one would, however, expect to see some bids slightly below 

estimated costs when contractors are especially eager to keep their resources working rather than 

sitting idle. This is because cost estimates typically include recovery of fixed overheads such as 

insurance payments, equipment depreciation, administrative personnel, etc. [29]. These costs are 

incurred regardless of whether a bid is accepted, so, at least in the short run, it may be better 

to obtain a contract at less than expected total cost than to lose the contract to a competitor. 

Furthermore, bidding below expected total cost may be a means of access to additional work at 

higher rates of compensation. 

Regret Minimization. There is regret of losing a bid (bidding too high) and regret of 

winning (bidding too low). The concept of loss regret is captured in the objective of volume 
maximization. Win regret is by far the most commonly addressed form in the literature (see, 

for example, the discussions by Engelbrecht-Wiggans [9] and Gates [27]). Also known as “money 

left on the table,” win regret is the difference between the subject bidder’s bid amount and that 
of the lowest competing bid when M < ML. That is, win regret is equal to (M - ML) . C,. 

The expectation of win regret decreases as M increases. Simultaneously, the bidder’s exposure 
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to potential loss via cost overruns is decreased, while expected opportunity costs resulting from 
foregone projects will be reduced [8]. A s a result, improving performance with respect to the 
win regret criterion will, at the same time, affect performance with respect to the criteria of risk 
exposure and opportunity costs in a positive manner. Win regret minimization is obtained by 
minimizing 

E[Regret(ML, M)] = [(E(ML) - M) . C,] Pr(Win 1 M), (6) 

for all values of M < E(ML). If M > E(ML), the regret expectation is 0. This function has 
no stationary point, although it reaches its optimum at E(ML), and maintains that value for all 
M > E(ML). Hence, to optimize strictly according to the regret criterion, one would bid with a 
ratio equal to or greater than the expected value of ML. 

2.3. Factors Affecting Bidder Behavior 

A number of project and situational characteristics affect an individual bidder’s behavior. 
These work through their effects on the probability distribution describing the lowest competing 
bid ratio, ML. As indicated above, if the shape and location of this distribution are known-or can 
be estimated, then the probability of success for a particular level of M can be determined. The 
variation in the parameters for the distribution of ML results from two types of uncertainty-that 
which is independent of cost considerations and that which reflects uncertainties resulting from 
the cost estimation process. Note that numerous researchers have addressed cost uncertainties in 
an attempt to understand a phenomenon known as the “winner’s curse.” (The winner’s curse is 
the tendency for the winner in a low-bid-wins auction to be the one who underestimates his/her 
costs the most [30].) F or example, Lederer [31] has addressed the winner’s curse and developed a 
regression model in an attempt to overcome the tendency of bidders in high-bid-wins situations 
to be negatively affected by the winner’s curse. 

Uncertainties independent of cost considerations include the number and identities of compet- 
ing bidders-the more bidders expected, the lower the acceptance probability for a given bid 
ratio M [7,23]. Addressing uncertainties relative to estimated costs (C,), Gordon and Welch [28] 
and Boughton [6] considered markups to be a function of risk and bidder attitude toward risk. 
Therefore, any factor introducing uncertainty is likely to increase M. These uncertainties can 
arise from type of construction, proportion of labor to total estimated cost, economic conditions, 
level of detail in plans and specifications, resource coverage, project location, relative proportion 
of skilled to unskilled labor, and other factors. The more uncertainty, the greater the tendency 
for ML to increase to compensate as bidders seek to ensure against more things going wrong. 

A key part of the proposed analysis is the distribution of the lowest competitor bid ratio. This 
can and should be based upon historical data and should take into consideration characteristics 
that typically vary from project to project. These items include economic factors, the number 
of competitors, and other potentially relevant data. The method of Broemser [20] and Carr and 
Sandahl [24] uses multiple regression to control for variation in these bidding factors and provides 
a relatively simple yet sound technique to develop an estimate of the distribution of ML. This 
method has, therefore, been chosen to be included as part of the proposed overall bidding support 
system. 

3. MULTICRITERIA BIDDING SUPPORT SYSTEM 

The proposed bidding support system consists of a two phase procedure. The first phase applies 
data analysis to identify relevant bidding factors, followed by an optimization phase seeking to 
optimize the decision maker’s multiattribute value function. 

3.1. Data Analysis 

Prior to any thorough bidding optimization, relevant bidding factors and their effects must 
be identified. These are the variables which relate the collective distribution of bid acceptance 
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probabilities to project and situational characteristics. As indicated above, this can be done 

through multiple regression, a procedure which is described in a bidding context by Carr and 

Sandahl [24]. Independent variables can be selected on the basis of specific local conditions, and 

the result of the data analysis phase will be a regression model describing ML, the low bid ratio. 

In a deviation from the Carr and Sandahl [24] method, however, a log-normal regression proce- 

dure, as proposed by Seydel[32], has been used here because of the ratio nature of the dependent 

variable. Here, M’,, the natural logarithm of ML, is the response variable, and the bidding factors 

are treated as predictors. When this model has been developed and tested, it is used to calculate 

an expected value for Mi (and, subsequently, for ML), given any future combination of values 

for the bidding factors. The regression model’s error mean squares constitutes an estimate of the 

variance of Mj, for a given combination of predictor variables. Hence, the standard deviation 

of Mi is estimated as the square root of the error mean squares. Based upon these estimates for 

the mean and standard deviation of ML, acceptance probabilities can be calculated for any given 

value of M through the use of the normal distribution. If regression residuals do not appear 

to be normally distributed, the empirical distribution can be used to estimate bid acceptance 

probabilities. Figure 2 demonstrates, for the profit maximization case, that the optimum bid can 

be dependent upon the situation (as characterized by the values of the bidding factors) involved. 

Here, a regression model was developed for E(ML), and profitability calculations for a variety of 

bid ratio values for two different projects were made. Profitability expectation curves for two dif- 

ferent projects are illustrated. Given the values of the bidding factors for the project illustrated in 

Figure 1, E(ML) is 110% (with a standard deviation of 5%), while for the other project, E(ML) 

is 105% (with a standard deviation of 3%). Correspondingly, there is also a rather significant 

difference in their respective optimum bid ratios (i.e., M*)-108% for the project illustrated in 

Figure 1, and 104% for the other project. 

CJpumum for (110,6) 

6.0 T__.__” ._._ __ __..._.__._____.__._... ~_ _,._,_,_.....___._ _.___&7_.___._~-_T_ _ _.” . . . . ..___._..__ 7_.“.. _...! 

I-- Ii I i __ _ _ 
------ ! 

06 loo 106 110 11s 120 

Bid Rptio, M (%) 

i -rqlloJs) - - - N(lwJ) 1 

Figure 2. Profitability expectations for two different projects. 

3.2. Optimization 

Once the distribution of ML has been estimated, the associated probabilities can be used to 

determine the optimal bid ratio, M*. The intent is to optimize the decision maker’s multiat- 

tribute value function, indicated in equation (3). If profit is the only objective of interest, single 
criterion analysis is accomplished by determining which value of M maximizes expected profit, 

M . Pr(Win 1 M). If multiple criteria are considered, weighting and summing standardized scores 
for each objective will provide the value of the DM’s multiattribute value function. 
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Let the relative weights for each objective be denoted as Wp, WV, and WR, for profit, volume, 

and regret, respectively. Although these can be obtained through a variety of multicriteria 

techniques, a recommended method is that typically used for criterion weighting in AHP. Under 

this approach, weights for each of the three criteria (profit, volume, and regret) are determined 

via the normalized principal eigenvector of a pairwise comparison matrix for the criteria [is]. 

Because of its relative simplicity, this procedure can be used by a decision maker each time 

she/he faces a bid decision, thus reflecting changes in preference structures as situations change 

(often over short time spans) for the DM. 

Note that, while the relative importance for the multiple objectives can be obtained, care 

must be taken to assure that different scales of measure do not distort these weights. This can 

be done if a normalized, or standm-dized, score with a best possible value of one and a worst 

possible value of zero, can be developed for each criterion. For the three objectives considered 

(profit maximization, volume maximization, and regret minimization), estimates for the best and 

worst attainment levels for each criterion can be identified over the reasonable range of bid levels. 

Then, prior to bid opening (and, hence, a prioti) standardized scores can then be obtained by 

the following general formula: 
X, = X - Xworst 

XBest - XWorst ’ 
(7) 

where X’ is the standardized value of X, and Xworst and Xn& are, respectively, the least and 

most preferred possible value of outcome X. 

Applying equation (7) to the bidding problem, let the lowest and highest values being consid- 

ered for M be indicated by MO and Ml, respectively, and let the lowest and highest reasonable 

values of C be denoted as Ci and Co, respectively. Then, P can be used to represent expected 

profit margin, should a bid with a ratio of M be accepted, and would be equal to M - E(C). 

The standardized value for the acceptance outcome on the profit criterion would then be 

p, = [M - E(C)1 - No - Co1 
[Ml - Cl] - [MO - Co] . 

Similarly, V can be used to represent project volume, should a bid with a ratio equal to M 

be accepted. The volume ratio for any given bid would simply equal the bid ratio, and the 

minimum possible volume ratio would be zero, while the maximum value would be Mi. Given 

these relationships, the standardized value for the acceptance outcome on the volume criterion 

would be 

@b) 

Finally, let the lowest and highest likely values of ML be denoted as LO and Li, and let R 

represent the win regret margin resulting, given a bid with a ratio of M is accepted. Prior to bid 

opening, the expected regret margin would be equal to E(L) - M. Thus, the standardized value 

for the expected acceptance outcome on the regret criterion would be 

R, = P(W) - Ml - [Ll - Mel 
-[Ll -MO] . (84 

If M is too high to be accepted (i.e., ML < M), then P’ = [MO -Ce]/[(Mi -Cl) - (MO -Cc)], 

V’ = 0, and R’ = 1. The standardized score for profit, P’, may be greater than zero when work 

is not obtained, because, while no profit is attained if no work is obtained, no losses are incurred 
either. Regret is zero (the best case) when no work is obtained. Thus, as the above analysis 

shows, when standardized values are used to represent criterion outcomes in a multicriteria model, 

nonacceptance outcomes are not ignored completely, even if they are not considered explicitly in 

the modelling. 

For each alternative under consideration (i.e., each M such that MO 5 M 5 Ml), an a priori 

multicriteria function can be evaluated for acceptance outcomes (i.e., where values of M are 
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such that ML > M). This function is composed of the criterion weights multiplied by the 

corresponding standardized scores according to each of the criteria and is equal to 

MCFl= (Wp.P’)+(I+V’)+(WR.R’). (% 

Similarly, the function for the nonacceptance outcomes (i.e., when L < B) will be 

WP. (MO - Co> 
MCFo = (Ml - C,) - (MO - Co) + wR* WI 

Recall that Pr(Win 1 M) = 1 - FL(M), where FL(M) is the cumulative distribution function 

(CDF) for ML evaluated at M. Since the nonacceptance probability is the complement of 

Pr(Win 1 M), the value of the nonacceptance probability will simply be FL(M). Weighting 

MCFl by 1 - FL(M) and MCFO by Fr,(M) and then summing these weighted components 

yields an expectation for the multicriteria function MCF. The multicriteria decision rule, which 

corresponds to equation (3), would then be to choose a value of M so as to 

Maximize E(MCF) = MCFl * [l - FL(B)] + MCFO . FL(B). (10) 

4. EVALUATION METHODOLOGY 

Whereas the previous section describes an approach to incorporating multiple criteria into the 

decision making process for bidding, this section is intended to address how actual outcomes might 

be evaluated with respect to those multiple criteria. It further seeks to establish a relationship 

between the two, that is, between decision making and outcome evaluation. This is necessary in 

order for the effectiveness of the proposed multicriteria decision making process to be examined. 

4.1. Multiattribute Value Functions 

Because it is extremely difficult, if not impossible, to verify a DM’s value for an outcome, 

no actual DM has been used to examine the effectiveness of the multicriteria bidding approach. 

Instead, a general form for the DM’s multiattribute value function has been assumed. This 

form uses two parameters per attribute or criterion, and performance of the multicriteria bidding 

approach is evaluated for various combinations of those parameters. Mutual and additive inde- 

pendence of the criteria is assumed, at least for this particular phase of the research. Thus, the 

multiattribute value functions used in this research have the form 

z = c vi [(x;)A(i)] , 

where 

Z = multiattribute value, 

Vi = weight parameter for criterion i (0 5 Vi <_ 1, CUi = l), 

Xy = standardized score for outcome value on criterion i (0 5 Xi 2 1) 

= [Xi - Xi(Worst)]/[Xi(Best) - Xi(Worst)], 

A(i) = shape parameter for criterion i (0 < Wi < 1). 

(11) 

Calculating Z starts with determining a standardized score (Xc) for the actual outcome on 

each of the criteria being considered. These scaled values are calculated in essentially the same 
manner as are P’, V’, and R’, except that actual, rather than expected, values for the cost and 
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low bid ratios are used. Hence, these are o posteriori values. If P” represents the scaled value 

for the profit criterion, its value for an acceptance outcome would be calculated as 

(1% p,,= [M-Cl-[MO-CO] 
[Ml - Cl] - [MO - Co] * 

For the volume criterion, if V” indicates the scaled value, the acceptance outcome would be 

calculated as 
M-MO 

v”= Mi -MO’ (12b) 

Finally, if R” represents the scaled value for the regret criterion, it would be calculated as 

R,, = I”L - Ml - fLl - Mel 
-PI --MO] ’ PC) 

if the subject bidder’s bid were less than the actual low bid. These scaled values would then be 

used to calculate the value of Z per equation (11). That is, designating the Vi values as Up, Uv, 

and UR, and designating the A(i) values as A(P), A(V), and A(R) for the profit, volume, and 

regret criteria, respectively, the amount of DM value for the acceptance outcome is calculated as 

z = up [(P,r)A(P)] + uv [(v”)A(v’] + v’, [(R”)A’R’] . (134 

If the subject bidder’s bid amount were greater than the actual low bid, then nonacceptance 

outcomes would be calculated, first on the profit and regret criteria, and then according to Z. 

(For the volume criterion, the nonacceptance outcome is simply zero.) The nonacceptance value 

for Z is generally nonzero and is calculated in the same manner as indicated for MCFO in 

equation (9b). That is, the nonacceptance amount of DM value would be calculated as 

WP(MO - Co> 
‘= (Ml--Cl)-(MO-CO) +wR’ W) 

4.2. Pairwise Comparison Weights and MAV Functions 

Barbeau [33] demonstrated how weights generated via AHP serve as viable approximations 

to true (i.e., underlying) criterion weights in multicriteria modelling. In other words, a DM 

with a value function of the form of Z in equation (11) should respond to a pairwise comparison 

process such that the resulting criterion weights will approximate the Vi values. As the A(i) values 

approach unity, this weight determination approach should improve in its approximations. Hence, 

if all A(i) values were unity, the optimization procedure described in the previous section should 

lead to the same decision to which maximizing the expectation for Z would lead. Conversely, 

knowledge of a DM’s true multiattribute value function should reveal the values for the criterion 

weights that would be ascertained using the pairwise comparison procedure. 

Knowledge of this relationship between DM value and the proposed multicriteria method can 

be helpful in examining the potential effectiveness of the proposed optimization procedure. Since 

criterion weight determination is an ad hoc procedure, there is no way of verifying that multicri- 

teria decisions based on the procedure are value maximizing [34]. Nevertheless, it is possible to 

specify a value function and then use its weight parameters (the Vi values) as criterion weights 

for evaluating the effectiveness of the proposed multicriteria bidding procedure. That is, for 

each value function, it is possible to determine what decision would be made using the proposed 

optimization procedure as well as the values of the potential outcomes from that decision to the 

DM. 

The relationship, therefore, provides a way of comparing DM value resulting from a multicri- 
teria decision to that resulting from a profit-based decision. Toward this end, 70 different value 

functions have been generated by varying both the weight and shape parameters. 
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Table 1 lists the sets of parameters for these value functions. The first column indicates 

a function’s reference number, the second through fourth columns list the function’s weight 

parameters, and the remaining columns list the function’s shape parameters. Values allowed 

for the weight parameters in Table 1 were based upon the profit weight parameter’s being 0.4, 

0.6, or 0.8, as long as no criterion was weighted more highly than was profit. This should seem 

reasonable, given Boughton’s finding [6], which showed profit maximization to be the company 

objective most frequently ranked. Increments of 0.1 were allowed for the weight parameters 

for volume and regret. These weight parameters can generally be interpreted as indicating the 

relative importance of the criteria, as do the criterion weights developed via pairwise comparisons, 

essentially. For the shape parameters, values were assigned as permutations of the values 0.2, 

0.5, and 0.8. Additional functions were generated by setting all shape parameters to 0.2, 0.5, 

0.8, or 1.0. Note that these shape parameters indicate decreasing levels of concavity (more of 

something is preferred but at a decreasing rate) for the individual attributes or criteria. With 

shape parameters of 1.0, the value functions are linear, which results in multiattribute value 

functions essentially the same as MCFO and MCFl as indicated by equations (9a) and (9b) 

above. There, the weights Wp, WV, and WR are analogous to the attribute weights (i.e., the Vi 

values) in equation (11). Thus, MCFO and MCFl are linear approximations to multiattribute 

value functions in which the criteria are mutually and additive independent. 

4.3. Construction Project Data 

Construction data for a large university system were used for evaluating the relative effective 

ness of the proposed multicriteria bidding approach. In addition, these data provided information 

for developing probability distributions for ML, the ratio of lowest bids to estimated costs. Of 

1,100 major building projects built over 25 years, 83 projects had adequate information recorded 

to support the regression-based determination of distribution parameters described above. This 

set of 83 projects was subsequently partitioned into two sets: an analysis set, used to estimate 

parameters for the regression equation for specifying probability distributions, and a holdout sam- 

ple, used to evaluate the multicriteria bidding approach. The analysis set had 55 observations, 

while the holdout sample contained 28 observations. To use these data, the best available ar- 

chitect’s estimate for each project (developed similarly to those generated by actual contractors) 

was used as the estimated cost (i.e., C,) of the project for a mythical subject bidder. 

A limitation concerning the use of the data in the evaluation of the proposed optimization 

procedure was the simulation of values to represent actual project costs. (Note, however, that this 

is a limitation not on the use of the proposed multicriteria bidding system but on the evaluation 

of the system’s effectiveness.) Only the actual builder will know his/her true project costs. Even 

for that builder, it is difficult to isolate costs associated with the project as it was bid, since 

change orders often cause the constructed project to be substantially different. Furthermore, 

only the most sophisticated of builders have cost reporting that is sufficiently accurate for this 

sort of analysis [6]. Determination of actual costs from data available to the university was, 

therefore, essentially impossible. In order that some variation of actual costs from estimated 

costs might be incorporated into the evaluation, a cost ratio (C) for each project was simulated 

from a triangular (0.9,1.0,1.2) distribution. This seemed reasonable to the authors based upon 
their experience with construction project accounting. As a result, the holdout data set used in 

the analysis is a hybrid of actual and simulated data. 

This hybrid data set contains observations on project reference number, estimated costs (C,), 

simulated cost ratios (C), lowest bid ratio (ML), and the regression model variables (number of 
bidders, interest rates, and proportional makeup) for each of the projects included. One might 

argue that the number of bidders is not necessarily known prior to the submission of bids. In 
such a case, a regression model using this information as a predictor variable would be of no use 

in supporting the bidding decision. To a certain extent it is true that the number of bidders is 
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Weight Parameters Shape Parameters Weight Parameters Shape Parameters 

UP uv UR A(P) NJ’) A(R) UP uv UR WY A(V) AU4 

Function Profit. Vol. Regret Profit Vol. Regret Function Profit Vol. Regret Profit Vol. Regret 

1 0.4 0.2 0.4 0.2 0.5 0.8 36 0.6 0.1 0.3 0.8 0.5 0.2 

2 0.4 0.2 0.4 0.2 0.8 0.5 37 0.6 0.1 0.3 0.2 0.2 0.2 

3 0.4 0.2 0.4 0.5 0.2 0.8 38 0.6 0.1 0.3 0.5 0.5 0.5 

4 0.4 0.2 0.4 0.5 0.8 0.2 39 0.6 0.1 0.3 0.8 0.8 0.8 

5 0.4 0.2 0.4 0.8 0.2 0.5 40 0.6 0.1 0.3 1.0 1.0 1.0 

6 0.4 0.2 0.4 0.8 0.5 0.2 41 0.6 0.2 0.2 0.2 0.5 0.8 

7 0.4 0.2 0.4 0.2 0.2 0.2 42 0.6 0.2 0.2 0.2 0.8 0.5 

8 0.4 0.2 0.4 0.5 0.5 0.5 43 0.6 0.2 0.2 0.5 0.2 0.8 

9 0.4 0.2 0.4 0.8 0.8 0.8 44 0.6 0.2 0.2 0.5 0.8 0.2 

10 0.4 0.2 0.4 1.0 1.0 1.0 45 0.6 0.2 0.2 0.8 0.2 0.5 

11 0.4 0.3 0.3 0.2 0.5 0.8 46 0.6 0.2 0.2 0.8 0.5 0.2 

12 0.4 0.3 0.3 0.2 0.8 0.5 47 0.6 0.2 0.2 0.2 0.2 0.2 

13 0.4 0.3 0.3 0.5 0.2 0.8 48 0.6 0.2 0.2 0.5 0.5 0.5 

14 0.4 0.3 0.3 0.5 0.8 0.2 49 0.6 0.2 0.2 0.8 0.8 0.8 

15 0.4 0.3 0.3 0.8 0.2 0.5 50 0.6 0.2 0.2 1.0 1.0 1.0 

16 0.4 0.3 0.3 0.8 0.5 0.2 51 0.6 0.3 0.1 0.2 0.5 0.8 

17 0.4 0.3 0.3 0.2 0.2 0.2 52 0.6 0.3 0.1 0.2 0.8 0.5 

18 0.4 0.3 0.3 0.5 0.5 0.5 53 0.6 0.3 0.1 0.5 0.2 0.8 

19 0.4 0.3 0.3 0.8 0.8 0.8 54 0.6 0.3 0.1 0.5 0.8 0.2 

20 0.4 0.3 0.3 1.0 1.0 1.0 55 0.6 0.3 0.1 0.8 0.2 0.5 

21 0.4 0.4 0.2 0.2 0.5 0.8 56 0.6 0.3 0.1 0.8 0.5 0.2 

22 0.4 0.4 0.2 0.2 0.8 0.5 57 0.6 0.3 0.1 0.2 0.2 0.2 

23 0.4 0.4 0.2 0.5 0.2 0.8 58 0.6 0.3 0.1 0.5 0.5 0.5 

24 0.4 0.4 0.2 0.5 0.8 0.2 59 0.6 0.3 0.1 0.8 0.8 0.8 

25 0.4 0.4 0.2 0.8 0.2 0.5 60 0.6 0.3 0.1 1.0 1.0 1.0 

26 0.4 0.4 0.2 0.8 0.5 0.2 61 0.8 0.1 0.1 0.2 0.5 0.8 

27 0.4 0.4 0.2 0.2 0.2 0.2 62 0.8 0.1 0.1 0.2 0.8 0.5 

28 0.4 0.4 0.2 0.5 0.5 0.5 63 0.8 0.1 0.1 0.5 0.2 0.8 

29 0.4 0.4 0.2 0.8 0.8 0.8 64 0.8 0.1 0.1 0.5 0.8 0.2 

30 0.4 0.4 0.2 1.0 1.0 1.0 65 0.8 0.1 0.1 0.8 0.2 0.5 

31 0.6 0.1 0.3 0.2 0.5 0.8 66 0.8 0.1 0.1 0.8 0.5 0.2 

32 0.6 0.1 0.3 0.2 0.8 0.5 67 0.8 0.1 0.1 0.2 0.2 0.2 

33 0.6 0.1 0.3 0.5 0.2 0.8 68 0.8 0.1 0.1 0.5 0.5 0.5 

34 0.6 0.1 0.3 0.5 0.8 0.2 69 0.8 0.1 0.1 0.8 0.8 0.8 

35 0.6 0.1 0.3 0.8 0.2 0.5 70 0.8 0.1 0.1 1.0 1.0 1.0 

unknown prior to bidding, but often a bidder can know, or at least estimate, how many other 

firms are interested in bidding. In situations involving bidding for public works projects, plan 
deposit fees are typically required, and the number of bidders can thus be estimated according to 
the amount of.plan sets acquired. In other situations, the authors’ own experiences have shown 
that often the number, as well as identities, of the competing bidders is typically well known 
among those submitting bids. Nevertheless, should reasonable estimates not be feasible for the 
number of bidders, a revised regression model not including that factor among the independent 
variables could be developed and used to estimate the distribution of ML. 

Regression on ML (the natural logarithm of ML) was used to estimate the variance of Mi and 
the expected low bid ratio for each of the projects. It was also found, via a chi-square goodnessof- 
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fit test on the residuals for the data in the analysis sample, that it was not reasonable to reject the 

null hypothesis of normality of those residuals (observed significance level was 33%). Therefore, 

the appropriate Pr(Win ) M) values were determined to be the complementary cumulative values 

from a lognormal distribution of ML, with a mean and variance as estimated according to the 

regression model. Table 2 lists the data in the holdout sample and includes each project’s expected 

low bid ratio, E(ML), as calculated according to the regression model developed from the analysis 

data set. In addition, the regression model is indicated at the bottom of the table. 

5. COMPARING THE MULTICRITERIA 
AND PROFIT-BASED APPROACHES 

One goal of this research has been to compare the performance of a multicriteria bidding 

method with that of a profit-based method. This comparison is not intended to show that 

DM value improves through the use of a multicriteria approach, since that should be a trivial 

exposition. That is, any approach that considers additional relevant criteria will naturally result 

in a performance with an improvement that varies directly (although not necessarily linearly) 

with the relative importance of the additional criteria [34]. Rather, the primary intention is 

to examine how much DM value improves, as well as to determine under what value functions 

there is a substantial improvement in value by adopting the multicriteria procedure. A secondary 

intention has been to determine whether there will be a substantial worsening of profits as DMs 

incorporate multiple criteria into their analyses. Hence, a statistical analysis is not appropriate, 

but a quantitative analysis of the results is, nevertheless, both possible and helpful. 

5.1. General Comparison-Evaluating the Methodology 

Comparisons of results for the two bidding decision rules started with the assumption of a 

value function. Then, data for one of the projects in the holdout sample were examined. For 

that project, an expected cost ratio, E(C), and an expected low bid ratio, E(ML), were cal- 

culated. These are indicated in Table 2. For each value of M corresponding to a percentage 

point on the CDF for ML, values of P’, V’, and R’ were calculated for the project, according 

to equations (Ba)-(Bc). From these standardized values, multiattribute functions were calculated 

for both acceptance and nonacceptance outcomes (MCFl and MCFO, respectively) according 

to equations (9a) and (9b). In order to do this, values for Wp, WV, and WR (the criterion 

weights that would have been obtained via pairwise comparisons or some other procedure) were 

needed. As discussed above, these criterion weights can be considered to be estimates for the 

weight parameters (i.e., the Vi values) in Z, the decision maker’s MAV function as indicated in 

equation (11). Hence, the Vi values were used as if they had been estimated via some elicitation 

process. From the multiattribute functions, a value of E(MCF), as indicated in equation (lo), 

was then calculated for each value of M being considered. As discussed above, the Pr(Win 1 M) 

values (i.e., the bid acceptance probabilities) used for that calculation were based upon the CDF 

of ML, the low bid ratio. The value of M corresponding to the largest E(MCF) was designated 

the value optimum, or MV, for the project. In a similar manner, values of E(Profit) were calcu- 

lated per equation (4) for each value of M under consideration. The value of M corresponding to 

the largest value of E(Profit) was then designated the profit optimum, or MP, for the project. 

For one of the projects in the holdout sample, Table 3 illustrates and tabulates these calcu- 

lations of value and profit expectations for each bid ratio considered between M = 1.053 and 

M = 1.245. Although not shown in the table, underbidding was allowed down to 90% of expected 

cost, reflecting an environment where volume might be at a premium. The single asterisk (*) 
indicates the expected profit corresponding to MP, which corresponds to bidding 19.8% above 

estimated costs, while the doubled asterisk (**) indicates the MCF expectation for MV, which 

corresponds to bidding only 7.2% above estimated costs. Note that the multicriteria approach 
resulted here in a substantially higher probability of winning (46%) than did the profit-based 
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Table 2. Construction project data (holdout sample). 

Project C, C ML Xl x2 x3 EWL) 

11984 8 5,963,108 1.11451 1.0797 -3.78 0.901 12 1.15496 

12024 14,577,435 1.03831 0.7088 7.08 0.759 11 0.85651 

12180 14,307,030 0.97581 0.8462 -14.91 0.777 6 1.40322 

12237 16,194,944 1.01853 0.9138 -0.50 0.761 6 1.07067 

12327 3,955,542 0.98431 0.9670 7.08 0.886 13 0.92347 

12380 10,554,266 1.03124 0.6290 -1.05 0.661 8 0.95791 

12392 669,439 0.94347 0.9010 7.08 0.881 28 1.00251 

12414 15,750,oOO 1.03051 0.7810 2.51 0.783 15 0.88523 

12431 2,152,638 1.00871 1.0380 -1.05 0.868 9 1.12611 

12465 4,320,OOO 0.97652 0.8760 6.61 0.747 6 0.93197 

12490 1,626,295 0.99909 1.1020 5.88 0.802 10 0.92400 

12514 16,797,114 0.96613 1.0070 0.64 0.845 10 1.05283 

12526 11,246,631 1.15284 0.7210 4.34 0.897 11 1.01336 

12550 4,327,OOO 0.98213 0.5520 4.03 0.752 17 0.81028 

12620 6,132,841 1.13859 1.0436 3.04 0.904 5 1.15745 

32400 1,529,145 0.98921 0.9140 7.08 0.866 13 0.90763 

32454 836,057 0.95061 1.1071 6.55 0.830 14 0.87292 

32485 4,338,668 0.95915 1.2107 2.72 0.717 5 0.99021 

32583 2,350,620 1.11683 0.9090 3.06 0.758 13 0.88804 

42395 580,753 1.11249 1.7341 3.30 0.797 5 1.05026 

42436 6,592,188 0.93257 1.2246 5.88 0.732 6 0.93200 

42503 14,251,735 1.09398 0.7990 2.85 0.760 11 0.92432 

42571 2,200,975 1.09340 0.9010 1.60 0.781 5 1.06766 

52351 913,368 1.08691 0.9080 10.94 0.797 7 0.88549 

52403 253,930 1.10138 0.9500 -4.29 0.747 6 1.13165 

52406 818,278 1.03740 0.7800 4.22 0.884 9 1.03951 

92114 79,041 1.01953 1.2168 -5.11 0.901 4 1.35808 

92575 239,735 1.00063 1.1950 -0.96 0.867 9 1.12333 

Variables: 

C, . . . Estimated project costs 

C . . Simulated ratio of sctual costs to estimated costs 

ML . . . Ratio of lowest competitor bid to C, 

Xl . . . Three-month treasury bill percentage yields (less inflation) 

X2 . Proportion of estimated costs designated to be actual construction 

X3 . . . Number of competitors bidding on project 

Regression Model: 

Mi = -0.51186 - 0.0178X1 + 0.86500X2 - 0.01729X3 

SE = Model standard error = 0.1828 

R2 = 31% 

Model significance = 0.003 

Estimate for E(L) = exp(L’ -t SE2/2) 

Goodness-of-Fit: 

Ho: Error terms N Normal(O,SE) 

Degrees of freedom = 8 

X2 = 9.18 

Observed significance = 0.326 
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Table 3. Decision analysis for project #12237. (Value function #l.) 

M Markup P’ V’ R’ MCFl MCFO Pr(Win 1 B) E(MCF) E(Profit) 

1.053 t 316,801 0.36 0.70 0.98 0.68 0.53 0.50 0.6046 $158,401 

1.058 395,217 0.36 0.71 0.99 0.68 0.53 0.49 0.6055 193,656 

1.063 474,001 0.37 0.71 0.99 0.69 0.53 0.48 0.6062 227,520 

1.067 553,169 0.37 0.71 1.00 0.69 0.53 0.47 0.6068 259,989 

1.072 632,689 0.38 0.71 1.00 0.69 0.53 0.46 0.6071** 291,037 

1.077 713,217 0.38 0.72 1.00 0.70 0.53 0.45 0.6068 320,948 

1.082 794,017 0.39 0.72 1.00 0.70 0.53 0.44 0.6064 349,367 

1.087 875,617 0.39 0.72 1.00 0.70 0.53 0.43 0.6060 376,515 

1.092 957,969 0.40 0.73 1.00 0.71 0.53 0.42 0.6056 402,347 

1.098 1,041,137 0.40 0.73 1.00 0.71 0.53 0.41 0.6051 426,866 

1.103 1,125,217 0.41 0.74 1.00 0.71 0.53 0.40 0.6045 450,087 

1.108 1,210,225 0.42 0.74 1.00 0.71 0.53 0.39 0.6039 471,988 

1.113 1,296,273 0.42 0.74 1.00 0.72 0.53 0.38 0.6033 492,584 

1.119 1,383,409 0.43 0.75 1.00 0.72 0.53 0.37 0.6026 511,861 

1.124 1,471,777 0.43 0.75 1.00 0.72 0.53 0.36 0.6018 529,840 

1.130 1,561,409 0.44 0.75 1.00 0.73 0.53 0.35 0.6011 546,493 

1.135 1,652,417 0.45 0.76 1.00 0.73 0.53 0.34 0.6002 561,822 

1.141 1,744,929 0.45 0.76 1.00 0.73 0.53 0.33 0.5993 575,827 

1.147 1,839,073 0.46 0.76 1.00 0.74 0.53 0.32 0.5984 588,503 

1.153 1,934,913 0.47 0.77 1.00 0.74 0.53 0.31 0.5974 599,823 

1.159 2,032,625 0.47 0.77 1.00 0.74 0.53 0.30 0.5964 609,788 

1.165 2,132,337 0.48 0.78 1.00 0.75 0.53 0.29 0.5954 618,378 

1.171 2,234,241 0.49 0.78 1.00 0.75 0.53 0.28 0.5942 625,587 

1.178 2,338,465 0.49 0.79 1.00 0.75 0.53 0.27 0.5931 631,386 

1.184 2,445,265 0.50 0.79 1.00 0.76 0.53 0.26 0.5918 635,769 

1.191 2,554,785 0.51 0.79 1.00 0.76 0.53 0.25 0.5906 638,696 

1.198 2,667,297 0.52 0.80 1.00 0.77 0.53 0.24 0.5892 640,151* 

1.205 2,783,089 0.52 0.80 1.00 0.77 0.53 0.23 0.5879 640,111 

1.213 2,902,433 0.53 0.81 1.00 0.77 0.53 0.22 0.5864 638,535 

1.220 3,025,713 0.54 0.81 1.00 0.78 0.53 0.21 0.5849 635,400 

1.228 3,153,313 0.55 0.82 1.00 0.78 0.53 0.20 0.5834 630,663 

1.236 3,285,665 0.56 0.82 1.00 0.79 0.53 0.19 0.5818 624,276 

1.245 3,423,297 0.57 0.83 1.00 0.79 0.53 0.18 0.5801 616,193 

Weight Parameters: Shape Parameters: 

up = 0.4 A(P) = 0.2 

uv = 0.2 A(V) = 0.5 

UR = 0.4 A(R) = 0.8 

approach (acceptance probability of 24%). For the strategy corresponding to M = MV, vol- 
ume was obviously improved, but at the expense of a great deal of profit, relative to the profit 
maximizing strategy. 

The multicriteria decision rule for a project was to bid an amount of MV. C,, while the profit- 
based decision rule was to bid MP . C,. These two amounts were treated as bids by the mythical 

subject bidder, thus resulting in two different decision outcomes from any given project for a 

specified MAV function. For each of the two hypothetical bids, a simulated profit amount (P) 

was calculated as 

P = (M - C) . C,, (14) 
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if M < ML (otherwise P = 0), and a simulated amount for DM value (Z) was calculated per 

equations (13a) and (13b). Both outcomes were calculated as if done upon completion of the 

project, so actual (i.e., simulated) costs were incorporated into the calculations. (Obviously, 

calculations involving actual costs could not be done in practice, since such costs are typically 

known only by the successful bidder, if anyone. However, the purpose here is not to recommend 

an evaluation methodology for practical application, but to examine the effects that might be 

evaluated, if costs could somehow be known. If an actual DM were interested in assessing the 

impact of the multicriteria approach, he/she could conduct analysis by replacing C with C,.) 

For a given MAV function, upon completion of these calculations of the profit and DM value 

for a project, the process was repeated for another project. This was done for all 28 projects 

in the holdout sample. Two values for the DM value outcome (one according the multicriteria 

decision rule and the other according to the profit-based decision rule) and two values for the 

profit outcome (one according the profit-baaed decision rule and the other according to the 

multicriteria decision rule) were thus obtained for each project. These values, along with the 

associated optima (MV and MP), are tabulated by project in Table 4 for one of the sets of value 

function parameters (Up = UR = 0.4, Uv = 0.2, A(P) = 0.2, A(V) = 0.5, and A(R) = 0.8). 

There it can be seen that, across the 28 projects in the holdout sample, using the multicriteria 

approach resulted in improving DM value by 1.3% (i.e., from 20.616 to 20.883) over that which 

occurred when the profit-based approach was used. At the same time, volume increased by 

32.8%, while profit decreased by 88.7% and regret increased by over 275%! Obviously, any sizable 

weight on volume (here, only 0.2, as compared with 0.4 for the other two criteria) will result in 

a substantial worsening of profit and regret outcomes over time. While DM value theoretically 

increased, as addressed in Section 6, the poor performance on the regret criterion certainly served 

as a limiting factor. However, note that, if winning the bid had been a serious objective, the 

multicriteria approach for this set of criterion weights would have improved the proportion of 

bids won by 100%. While this would have come at cost of $2,201,922 in foregone profits, the 

bidder might have felt this worthwhile in order to maintain a competent work force and/or to 

remain a viable business entity. Of general concern is the comparatively large amount of money 

left on the table (i.e., regret) resulting from the use of the multicriteria approach, in spite of a 

criterion weight for regret equal to that for profit and double that for volume. This tended to 

occur regardless of the combination of criterion weights used, possibly because the value for UR 

was never allowed to exceed 0.4. Apparently, the procedure is extremely sensitive to the weight 

for volume and relatively insensitive to that for regret. Further, research needs to be directed 

toward determining what are reasonable values for these parameters among actual DMs. Note 

that, of the eleven projects for which winning bids could have resulted in profitable outcomes 

( i.e., ML > l.OOO), five would have been won with the multicriteria approach summarized in 

Table 4, and three would have been won if the profit maximization approach had been used. 

Certainly, a means of screening projects prior to estimating and bidding for them, in order to 

identify those that are potentially profitable, is called for, and Ahmad [ll] has proposed such. 

5.2. Project Specific Comparison-Aiding the Decision Maker 

The purpose of comparing the outcomes of the multicriteria and profit-based approaches has 

been to identify the proposed methodology’s effectiveness with respect to improvement in DM 

value and the corresponding cost in terms of profit. Hence, the purpose of the comparisons has 

not been to assist the DM in determining whether to use the multicriteria approach for any given 

instance. Nevertheless, some of the information generated by the procedure could be useful to 

the DM on a project-by-project basis by allowing him/her to be aware of the tradeoffs involved. 

For any given project about to be bid, the procedure can identify both the optimal bid amount 

according to the profit maximization objective and the optimal bid amount according to the 
multicriteria approach. The actual profit ramifications, should the bid be accepted, will be 
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Table 4. Summary of results for value function #l. 

Project ML MV MP Z 1 MV Z 1 MP Profit 1 MV Profit 1 MP 

11984 1.080 1.151 1.237 0.721 0.721 0 0 

12024 0.709 0.937 1.138 0.721 0.721 0 0 

12180 0.846 1.361 1.361 0.721 0.721 0 0 

12237 0.914 1.072 1.198 0.721 0.721 0 0 

12327 0.967 0.965 1.148 0.877 0.721 -76,588 0 

12380 0.629 0.982 1.157 0.721 0.721 0 0 

12392 0.901 1.009 1.174 0.721 0.721 0 0 

12414 0.781 0.948 1.140 0.721 0.721 0 0 

12431 1.038 1.128 1.225 0.721 0.721 0 0 

12465 0.876 0.969 1.159 0.721 0.721 0 0 

12490 1.102 0.966 1.149 0.834 0.721 -54,603 0 

12514 1.007 1.055 1.192 0.721 0.721 0 0 

12526 0.721 1.015 1.178 0.721 0.721 0 0 

12550 0.552 0.918 1.124 0.721 0.721 0 0 

12620 1.044 1.154 1.240 0.721 0.721 0 0 

32400 0.914 0.958 1.154 0.721 0.721 0 0 

32454 1.107 0.945 1.141 0.831 0.721 -4,850 0 

32485 1.211 1.001 1.177 0.831 0.925 181,784 945,044 

32583 0.909 0.951 1.144 0.721 0.721 0 0 

42395 1.734 1.052 1.197 0.659 0.750 -35,141 49,040 

42436 1.225 0.969 1.159 0.813 0.916 241,471 1,489,759 

42503 0.799 0.966 1.149 0.721 0.721 0 0 

42571 0.901 1.069 1.202 0.721 0.721 0 0 

52351 0.908 0.949 1.141 0.721 0.721 0 0 

52403 0.950 1.133 1.225 0.721 0.721 0 0 

52406 0.780 1.041 1.192 0.721 0.721 0 0 

92114 1.217 1.323 1.336 0.721 0.721 0 0 

92575 1.195 1.125 1.222 0.897 0.721 29,848 0 
~ - 

Totals: 20.883 20.616 $ 281,921 6 2,483,843 

17,789,664 13,442,120 (Volume sums) 

3,359,329 894,464 (Regret sums) 

Legend: 

MV . . Optimum bid ratio per multicriteria method. 

MP . . Optimum bid ratio profit-based method. per 

Z I MV... DM value of outcome using multicriteria method. 

Z I MP . . DM value of outcome using profit-based method. 

Profit 1 MV . . . Profit resulting from use of multicriteria method. 

Profit 1 MP . . . Profit resulting from use of profit-based method. 

obvious. However, the corresponding expected profits can also be indicated, along with the 

acceptance probabilities corresponding to each of the two bid amounts. In addition, the expected 

regret for each bid amount can be identified, along with the expected DM value associated with 

each bid amount. Expected regret would simply be the difference between the expected low bid 

(determined via the regression model) and the given bid amount. 

Consider, for example, Project #12237, for which the decision analysis is summarized above 

in Table 3. The optimal bids are $17,367,456 (for maximizing DM value) and $19,402,064 (for 

maximizing profit), with acceptance probabilities of 46% and 24%, respectively. Since, the ex- 
pected low bid ratio, E(ML), is 1.07 and the expected cost (C,) is $16,194,944, the expected 
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low bid is $17,339,441 and expected win regret is 0 for either bid amount. Expected DM value 

E(MCF) at the lower bid amount is 0.61 (where ideal would be l.OO), and that associated with 

the higher amount is 0.59. It would be up to the DM to determine whether the doubled chance of 

winning and/or the 3% improvement in preopening optimism (i.e., expected DM value) is worth 

the $2,034,608 difference in possible profit. Of course, that profit difference is only a possibility, 

and the DM may be capable of understanding that it is only a $349,114 difference in terms of 

expected (or long run per project) profit. 

6. RESULTS AND CONCLUSIONS 

The procedure described above and illustrated in Table 4 was followed for each of the 70 MAV 

functions indicated in Table 1. For each MAV function, four primary sums were calculated, 

as indicated on the totals line of Table 4. These sums are the DM value totals for either of 

the decision rules (maximize expected DM value and maximize expected profit) and the profit 

totals for either of the decision rules. A look at these measures allows one to develop a feel 

for the tradeoffs involved when criteria besides profit are considered in the bidding problem. 

Subsequently, when the bidding totals are compared across MAV functions, it can be seen under 

which circumstances the multicriteria approach will make a substantial contribution and when 

the contribution is of relatively little value. In addition, one can begin to identify the effects of 

nonlinear MAV functions on the outcomes of the proposed multicriteria approach. 

Summarized in Table 5 are the DM value and profit results for each of the 70 MAV functions. 

Essentially, the table indicates the effectiveness of the multicriteria approach, as measured by 

the percentage improvement in DM value that resulted from using the multicriteria approach 

rather than the profit based approach. Furthermore, the percentage worsening of profit total 

corresponding to the improvement in DM value is shown for each MAV function. Note that 

improvement in DM value ranged between 1% and 7%, while profit totals worsened between 82% 

and 127%. 

If the DM value outcome corresponding to a given MAV function showed an improvement of 

more than 5%, then the multicriteria approach was considered to have had a substantial effect on 

DM value. As can be seen in the table, this occurred for MAV function numbers 24 through 45. 

For these functions, although not only for these functions, profit has weights of 0.4 and 0.6. 

The most improvement in DM value occurred with MAV function 30, which is linear and where 

profit and volume are equally weighted. The least improvement in value occurred with MAV 

function 2, where profit and regret are equally weighted. In general, it appears that noteworthy 

improvements in DM value occur when volume is the most important criterion and/or when 

profit is more important than any other criterion. Apparently, the regret criterion tends to 

confound the results as it becomes increasingly important, and improvements become relatively 

inconsequential. 

Table 5 shows that, for a given set of weight parameters, the effectiveness of the proposed 

multicriteria bidding approach varied somewhat according to the shape parameters of the MAV 

functions. Recall that the optimization approach essentially relies upon the use of linear approx- 

imations to DM value assessments. Hence, it would be expected that the effectiveness of the 

approach would improve as the underlying MAV functions approach linearity, and this improve- 

ment generally did occur. However, for the most part, this improvement in effectiveness was 

relatively small, with the greatest improvement having been from a 4.10% improvement in DM 

value to a 7.03% improvement. On an absolute scale, this is not especially noteworthy. In fact, 

for two sets of weight parameters, the effectiveness of the multicriteria approach was actually 
worse for linear underlying MAV functions than it was for nonlinear functions. (This anomaly 

occurred for functions where profit is weighted at 0.6 and where volume is weighted no more 

highly than is regret.) As a result, it appears that the proposed approach is relatively robust to 
nonlinearities in the DM’s underlying MAV function. 
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Table 5. Summary of effects of multicriteria bidding approach. 

Weight Parameters Shape Parameters % Improvement % Worsening 

hnCtiOn up &J UR A(P) A(V) A(R) DM Value Profit 

1 0.4 0.2 0.4 0.2 0.5 0.8 1.29 88.65 

2 0.4 0.2 0.4 0.2 0.8 0.5 1.27 88.65 

3 0.4 0.2 0.4 0.5 0.2 0.8 1.39 88.65 

4 0.4 0.2 0.4 0.5 0.8 0.2 1.43 88.65 

5 0.4 0.2 0.4 0.8 0.2 0.5 1.55 88.65 

6 0.4 0.2 0.4 0.8 0.5 0.2 1.64 88.65 

7 0.4 0.2 0.4 0.2 0.2 0.2 1.80 88.65 

8 0.4 0.2 0.4 0.5 0.5 0.5 1.77 88.65 

9 0.4 0.2 0.4 0.8 0.8 0.8 1.64 88.65 

10 0.4 0.2 0.4 1.0 1.0 1.0 1.47 88.65 

11 0.4 0.3 0.3 0.2 0.5 0.8 1.87 93.63 

12 0.4 0.3 0.3 0.2 0.8 0.5 2.13 97.78 

13 0.4 0.3 0.3 0.5 0.2 0.8 2.48 101.29 

14 0.4 0.3 0.3 0.5 0.8 0.2 2.65 104.30 

15 0.4 0.3 0.3 0.8 0.2 0.5 2.96 106.91 

16 0.4 0.3 0.3 0.8 0.5 0.2 3.18 109.19 

17 0.4 0.3 0.3 0.2 0.2 0.2 3.50 111.21 

18 0.4 0.3 0.3 0.5 0.5 0.5 3.63 113.00 

19 0.4 0.3 0.3 0.8 0.8 0.8 3.65 114.60 

20 0.4 0.3 0.3 1.0 1.0 1.0 3.63 116.04 

21 0.4 0.4 0.2 0.2 0.5 0.8 4.10 117.54 

22 0.4 0.4 0.2 0.2 0.8 0.5 4.44 118.90 

23 0.4 0.4 0.2 0.5 0.2 0.8 4.94 120.14 

24 0.4 0.4 0.2 0.5 0.8 0.2 5.21 121.29 

25 0.4 0.4 0.2 0.8 0.2 0.5 5.68 122.33 

26 0.4 0.4 0.2 0.8 0.5 0.2 6.03 123.30 

27 0.4 0.4 0.2 0.2 0.2 0.2 6.47 124.20 

28 0.4 0.4 0.2 0.5 0.5 0.5 6.74 125.03 

29 0.4 0.4 0.2 0.8 0.8 0.8 6.91 125.81 

30 0.4 0.4 0.2 1.0 1.0 1.0 7.03 126.53 

31 0.6 0.1 0.3 0.2 0.5 0.8 6.75 123.31 

32 0.6 0.1 0.3 0.2 0.8 0.5 6.50 120.30 

33 0.6 0.1 0.3 0.5 0.2 0.8 6.33 117.46 

34 0.6 0.1 0.3 0.5 0.8 0.2 6.16 114.79 

35 0.6 0.1 0.3 0.8 0.2 0.5 6.04 112.28 

36 0.6 0.1 0.3 0.8 0.5 0.2 5.93 109.91 

37 0.6 0.1 0.3 0.2 0.2 0.2 5.76 107.66 

38 0.6 0.1 0.3 0.5 0.5 0.5 5.63 105.53 

39 0.6 0.1 0.3 0.8 0.8 0.8 5.52 103.51 

40 0.6 0.1 0.3 1.0 1.0 1.0 5.43 101.59 

41 0.6 0.2 0.2 0.2 0.5 0.8 5.32 100.56 

42 0.6 0.2 0.2 0.2 0.8 0.5 5.21 99.57 

43 0.6 0.2 0.2 0.5 0.2 0.8 5.14 98.63 

44 0.6 0.2 0.2 0.5 0.8 0.2 5.06 97.73 

45 0.6 0.2 0.2 0.8 0.2 0.5 5.02 96.87 
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Table 5. (cont.) 

Weight Parameters Shape Parameters % Improvement % Worsening 

Function Up Uv UR AU') A(V) A(R) DM Value profit 

46 0.6 0.2 0.2 0.8 0.5 0.2 4.97 96.05 

47 0.6 0.2 0.2 0.2 0.2 0.2 4.91 95.26 

48 0.6 0.2 0.2 0.5 0.5 0.5 4.84 94.50 

49 0.6 0.2 0.2 0.8 0.8 0.8 4.79 93.78 

50 0.6 0.2 0.2 1.0 1.0 1.0 4.73 93.09 

51 0.6 0.3 0.1 0.2 0.5 0.8 4.72 93.01 

52 0.6 0.3 0.1 0.2 0.8 0.5 4.69 92.93 

53 0.6 0.3 0.1 0.5 0.2 0.8 4.71 92.86 

54 0.6 0.3 0.1 0:5 0.8 0.2 4.69 92.79 

55 0.6 0.3 0.1 0.8 0.2 0.5 4.71 92.72 

56 0.6 0.3 0.1 0.8 0.5 0.2 4.72 92.66 

57 0.6 0.3 0.1 0.2 0.2 0.2 4.73 92.60 

58 0.6 0.3 0.1 0.5 0.5 0.5 4.73 92.54 

59 0.6 0.3 0.1 0.8 0.8 0.8 4.72 92.48 

60 0.6 0.3 0.1 1.0 1.0 1.0 4.70 92.42 

61 0.8 0.1 0.1 0.2 0.5 0.8 4.63 91.21 

62 0.8 0.1 0.1 0.2 0.8 0.5 4.56 90.03 

63 0.8 0.1 0.1 0.5 0.2 0.8 4.53 88.90 

64 0.8 0.1 0.1 0.5 0.8 0.2 4.49 87.80 

65 0.8 0.1 0.1 0.8 0.2 0.5 4.48 86.73 

66 0.8 0.1 0.1 0.8 0.5 0.2 4.47 85.69 

67 0.8 0.1 0.1 0.2 0.2 0.2 4.41 84.69 

68 0.8 0.1 0.1 0.5 0.5 0.5 4.38 83.71 

69 0.8 0.1 0.1 0.8 0.8 0.8 4.36 82.77 

70 0.8 0.1 0.1 1.0 1.0 1.0 4.35 81.85 

Examination of the profitability results in Table 5 reveals that improvements in DM value are 

not gained without a considerable worsening on the profit dimension. In fact, for nearly half of 

the MAV functions considered, there was more than a 100% worsening, which could easily be 

considered as a drastic effect. That is, a worsening of 100% would indicate a contractor operating 

with zero profit, while a worsening of more than 100% would indicate a contractor operating at a 

loss. Across the 70 MAV functions, the minimum worsening on the profit criterion corresponds to 

a linear MAV function with profit weighted at 0.8. That is, profit is weighted quite heavily, while 

volume and regret are only minimally weighted. One would, of course, expect that functions with 

high profit weights would lead to relatively little compromise on profit outcomes. However, an 

82% reduction in profit is still severe, indicating that the proposed multicriteria approach is quite 

sensitive to variation in the importance of criteria other than profit. The most notable worsenings 

of profit outcomes occurred where the profit weight was the lowest considered and volume was 

equally important, while regret was slightly less important (MAV functions 21 through 30). This 

also seems reasonable, since bidding for optimal volumes typically results in bids farther below 
cost than profit maximization results in bids above cost. Furthermore, acceptance probabilities 

are higher with volume maximization since bids are lower. Hence, any time volume is weighted 

on a par with profit, negative total profits are likely to result. 

It should be noted that, for any project on which both decision rules resulted in acceptance of 

the bid (see, for example, outcomes for projects 32485, 42395, and 42436 in Table 4), DM value 
resulting from the multicriteria method was worse than that from the profit-baaed method. This 
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is an interesting and perhaps initially distressing occurrence. Nevertheless, this is a reasonable 

result. A bid considering volume as a criterion will always be lower than one considering only 

profit. As a result, if a bid based solely on profit maximization were to be accepted, so would a 

bid based in part on volume. Because the latter is lower in amount, actual profits will be lower, 

regret will be higher, and, paradoxically, volume will be lower for a specific job. Hence, in such 

cases, the multicriteria approach has as its primary advantage that more projects will be won, 

and subsequently there will be more nonzero attainments on the volume criterion. Nevertheless, 

as this criterion carries progressively higher relative weights, the multicriteria bidding approach 

based upon this MAV function model should be of increasing worth to the DM. This is borne 

out by the fact that the greatest DM value improvements, as indicated in Table 5, occurred with 

MAV functions characterized by the maximum weight considered for volume. 

In general, it appears that the proposed multicriteria bidding approach could prove beneficial 

to a relatively wide range of decision makers. Those who value volume quite highly will likely 

find their overall satisfaction with the outcomes (as reflected by their MAV functions) improved 

substantially (i.e., at least 5%) with the proposed approach. In addition, those who value profit 

highly yet wish to bring other criteria into consideration are likely to benefit substantially or 

nearly substantially. Of course, as the importance of volume increases, the DM will pay a severe 

price in terms of profitability. This could be especially difficult to tolerate, as profitability is 

often the only tangible measure on which DMs are evaluated. As a result, any determination of 

importance measures for the criteria should take into consideration how the DM will ultimately be 

evaluated. More importantly, it should be the appropriate person (or persons) whose preference 

information is to be incorporated into the bidding optimization process. This is the person who is 

ultimately affected by the decision, generally the owner or CEO, and not a lower level manager, 

of the firm. Furthermore, as situations change, so do the preference structures of the DMs. 

For example, when a firm has developed a sizeable backlog of work, the volume criterion is not 

likely to have a high importance attached to it for future bidding opportunities, but when work 

is short in supply, the opposite holds. Hence, not only should the appropriate DM be taken 

into consideration, but the current situation of the firm is also relevant in assessing preference 

information. 

7. SUMMARY 

While numerous works have addressed bidding optimization over the past 40 years, industry 

practitioners generally continue to ignore those works and, instead, use rules of thumb and other 

arbitrary approaches for determining prices [6,19]. This likely results, at least in part, from the 

fact that existing optimization methods tend to produce unsatisfactory results, as they are inca- 

pable of incorporating tradeoffs among multiple criteria. Furthermore, in order to be successfully 

adopted by industry practitioners, bidding optimization, whether multicriteria or not, must take 

place as part of a system. Such a system is necessarily comprised of at least two components: 

an analysis component for generating the probability information required in the evaluation of 

various bidding alternatives, and an optimization component for determining which alternative is 

best, given the tradeoffs involved. Although the analysis component has been discussed briefly in 

this paper and in detail in other work [5,24,32], the optimization component has been the focus 

of this paper. Its success depends upon the reliability of the analysis component, which begins 

with good record keeping and is followed by the implementation of sound statistical procedures. 

This system’s perspective has guided the research and the discussion that has been presented 

here. Based upon actual data, a probability model has been developed to take into considera- 

tion major factors which affect bidder behavior. Then, based upon that model, a multicriteria 

optimization approach was presented and evaluated for effectiveness. That approach employs 

an elicitation procedure (preferably based on pairwise comparisons) to generate estimates of the 

weights for the DM’s multicriteria objective function. In the evaluation of the proposed bidding 
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optimization approach, a wide range of preference structures (as indicated by MAV functions) 

were considered. For a good portion of the preference structures considered, the multicriteria 

approach, when compared to the profit-based approach, led to substantial or nearly substantial 

improvement in DM value outcomes. On the other hand, for a few preference structures, there 

was little improvement when the additional criteria were considered. Essentially, in situations 

where there was pelatively little concern about regret (“money left on the table”) and related 

criteria, the proposed multicriteria optimization approach proved beneficial. 

An extension of this research would consider the automation of the process, and hence, address 

a third component for the bidding system: an information processing capability which would 

make it possible to acquire, maintain, and manipulate the data required by bidding optimization. 

One such system isalready operational and is described by Hegazy and Moselhi [15] and Moselhi 

et al. [17]. In addition, somewhat different architectures have been proposed by Ahmad and 

Minkarah [14] and Seydel [35], and Ward and Chapman [36] have provided some general guidelines 

for bidding information systems. Other extensions to the research include a more detailed look 

at the criteria contractors actually consider, as well as an empirical study of the relationship 

between criterion weights determined via pairwise comparisons and those determined through 

other procedures. 

Another extension of this research must address how to modify the proposed system, if possi- 

ble, to deal with situations in which bid takers (i.e., potential customers) are awarding contracts 

according to criteria beyond price (i.e., lowest bid). Increasingly, firms are seeking to implement 

Deming’s fourth point: “end the practice of awarding business on price tag alone” [37]. Cus- 

tomers are looking at ways to choose trade partners on the basis of product quality, provider 

reputation, delivery speed, service beyond the sale, etc. Such an extension will need to incorpo 

rate a considerably broader competitive analysis addressing the subject bidder’s relative strengths 

and weaknesses according to the criteria indicated by the potential customer. At present, the 

literature does address the problem from the bid taker perspective, but no work has been found 

addressing this from the bidder’s perspective. However, the product/service design tool, QFD 

(quality function deployment, as discussed by Zangwill [38], for example) may provide some in- 

spiration for modelling the supplier/customer joint multicriteria selection problem in a bidding 

context. After all, a bid taker considering multiple criteria is essentially looking for the product 

(i.e., bidder) with the best combination of values for factors that are important to the bid taker. 

It then is up to the bidder to design a package (price, quality, timing, etc.) that will appeal to 

the customer. Of course, for any given bid, essentially the only factor under the bidder’s control 

is price. The acceptance probability associated with a given price will then be dependent upon 

how well the subject bidder measures up competitively to the other bidders with respect to the 

customer’s criteria. It is here that QFD might furnish some guidance for organizing the extensive 

data resulting from the necessary competitive analysis and then utilizing those data to provide 

estimates of acceptance probabilities for various markup levels. Alternatively, a game theoretic 

approach might be useful in formulating a descriptive analysis. Nevertheless, because of the com- 

plexities inherent to game theory, it is not likely to be of much help in developing prescriptive 

analyses of this problem. 

In summary, this paper has proposed an approach for incorporating multiple criteria into the 

bidding decision and has considered that approach as part of an overall bidding system. In the 

process, a method for evaluating the effectiveness of the proposed approach has been developed 

and demonstrated. Furthermore, the evaluation provides a look at the tradeoffs involved in 

moving away from the traditional single criterion approach. The construction bidding context 
was addressed, but the approach should be generalizable to other one-item-at-a-time auctions 

in which a moderate level of uncertainty exists and in which the low bidder wins. Of course, 

context-specific data would always need to be used. Competitive bidding is an interesting area 

in which little has been done with respect to using operations research techniques to improve 

results. This is because bidding is a complex problem, and no particular method will remove the 
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complexity. However, the development and implementation of methods such as those proposed 
here are likely to lead to greater acceptance by practitioners and to improved results by those 
who are willing to use those methods. 
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