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Abstract

Existing similarity measures between intuitionistic fuzzy sets/vague sets are analyzed, compared and summarized by their counter-
intuitive examples in pattern recognition. The positive aspects of each similarity measure are demonstrated, along with counter cases
and discussion of the conditions under which each may not work as desired. The research presented here could benefit selection and
applications of similarity measures for intuitionistic fuzzy sets and vague sets in practice.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Fuzzy sets theory, proposed by Zadeh (1965), is a realis-
tic and practical means to describe the objective world that
we live. The method has successfully been applied in vari-
ous fields. As a generalization of fuzzy sets, intuitionistic
fuzzy sets (IFSs) was presented by Atanassov (1986), and
vague sets were proposed by Gau and Buehrer (1993).
Bustince and Burillo (1996) pointed out that the notion
of vague sets was the same as that of IFSs. Atanassov pub-
lished a number of additional studies (Atanassov, 1989,
1994a,b, 1995, 1999). IFSs/vague sets make descriptions
of the objective world more realistic, practical, and accu-
rate, making it very promising. They have been widely
applied in decision making (Szmidt and Kacprzyk, 1996),
logic programming (Atanassov and Gargov, 1990; Atanas-
sov and Georgeiv, 1993) medical diagnosis (De et al.,
2001), pattern recognition (Hung and Yang, 2004) and
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seems to have been more popular than fuzzy sets technol-
ogy in recent years.

A similarity measure is used for estimating the degree
of similarity between two sets. Since Zadeh proposed
fuzzy sets, many scholars have conducted research on
similarity measures between fuzzy sets from all kinds of
viewpoints, which have been or could be applied in areas
such as data preprocessing, for identifying the functional
dependency relationships between concepts in data mining
systems, for approximate reasoning (Li et al., 2002; Tian-
jiang et al., 2002), and for other purposes to include pat-
tern recognition (Dengfeng and Chuntian, 2002; Mitchell,
2003; Zhizhen and Pengfei, 2003 and Hung and Yang,
2004). Other similarity measures proposed recently for
IFSs as a generalization of fuzzy sets include Chen
(1995, 1997), Hong and Kim (1999) and Fan and Zhang-
yan (2001).

In this paper, existing similarity measures between IFSs/
vague sets are analyzed, compared and summarized by
their counter-intuitive examples in pattern recognition.
The focus of this study is on apparent weaknesses of these
similarity measures, and the conditions or reasons they do
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not work. This research could benefit selection and applica-
tions of similarity measures between IFSs/vague sets in
practice.
2. Preliminaries

This section reviews basic definitions and terms. Some
principles involved in this paper are as follows:
2.1. Intuitionistic fuzzy sets (IFSs)

This section describes the basic definitions relating to
fuzzy sets.

Definition 2.1.1 (Fuzzy Sets). Zadeh (1965) defined a
Fuzzy Set A in the universe of discourse X = {x1,x2, . . . ,
xn} as follows:

A ¼ fðx; lAðxÞÞjx 2 X ;lAðxÞ 2 ½0; 1�g

X! uA(x) is called membership function of A, uA(x)
indicates the membership degree of x to A, uA(x) takes its
value on interval [0,1]. The bigger the value of uA(x) is,
the greater the degree of membership of x to A is. uA(x)
indicates the proofs of both pros and cons. It is impossible
for uA(x) to denote only pros or only cons or at the same
time both of them. This is a problem solved in part by
IFSs.

Definition 2.1.2 (Intuitionistic fuzzy sets (IFSs)). Atanas-
sov (1986) gave an IFS V in the universe of discourse
X = {x1,x2, . . . ,xn} defined as follows:

V ¼ fðx; tvðxÞ; fvðxÞÞjx 2 X ; tvðxÞ 2 ½0; 1�; fvðxÞ 2 ½0; 1�;
0 6 tvðxÞ þ fvðxÞ 6 1g

tv(x) and fv(x) denotes a membership function and
non-membership function of x to V separately. tv(x) is
the lowest bound of membership degree derived from
proofs of supporting x; fv(x) is the lowest bound of
non-membership degree derived from proofs of rejecting
x, It is clear that the membership degree of IFS V

has been restricted in [tv, 1 � fv], which is a subinterval of
[0,1].

Let hv(x) denote 1 � tv(x) � fv(x), which could be
regarded as a degree of uncertainty or hesitancy of x to V

or waver, if tv(x) = 1 � fv(x), implying that we know x pre-
cisely. If so, IFSs degenerate into fuzzy sets; If tv(x) = 0 and
fv(x) = 1, or, tv(x) = 1 and fv(x)=0, indicating the informa-
tion on x is very precise, IFSs degenerate into crisp sets.
Thus we can conclude that IFSs are extensions of fuzzy sets
and crisp sets.

Definition 2.1.3. If an IFS V = U, iff tv � 0 and fv � 1.
Definition 2.1.4. Complement set V of an IFS V is defined
as tV ¼ fV , 1� fV ¼ 1� tV .
Definition 2.1.5. A and B denote an IFS respectively, If
A = B, iff tA = tB, 1 � fA = 1 � fB.

Definition 2.1.6. A � B iff tA 6 tB and fA P fB.
2.2. Similarity measure between IFSs

Dengfeng and Chuntian (2002) introduced the following
definition of similarity measure between IFSs:
Definition 2.2.1. A mapping S : IFSs(X) · IFSs(X)! [0, 1].
IFSs(X) denotes the set of all IFSs in X = {x1,x2, . . . ,xn}.
S(A,B) is said to be the degree of similarity between
A 2 IFSs(X) and B 2 IFSs(X), if S(A,B) satisfies the prop-
erties condition – (P1–P5)

P1: S(A,B) 2 [0, 1],
P2: SðA;BÞ ¼ 1() A ¼ B,
P4: S(A,B) = S(B,A),
P4: S(A,C) 6 S(A,B) and S(A,C) 6 S(B,C) if A � B � C,

C 2 IFSs(X),
P5: SðA;BÞ ¼ 0() A ¼ U and B ¼ A, or, A ¼ B and

B = U.
Remark. P2 is a new ‘strong’ version proposed by Hung
and Yang (2004), but has been taken for granted by Chen
(1995, 1997), Hong and Kim (1999), Fan and Zhangyan
(2001) and Li et al. (2002). P5 is assumed in these five
papers (which concern vague sets), but not by Dengfeng
and Chuntian (2002), Mitchell (2003), Zhizhen and Pengfei
(2003), or by Hung and Yang (2004). These last four
papers address IFSs. Bustince and Burillo (1996) have
pointed out the notion of vague sets is the same as that
of IFSs. After consideration, we think the addition of P5
is necessary, which makes the definition of similarity
measure between IFSs more strict and precise. In the next
section some counter-intuitive cases are shown to result
from similarity measures that do not satisfy the property
condition P5.
3. Analysis on existing similarity measure between IFSs/

vague sets

In this section, comprehensive analysis of similarity
measures between IFSs/vague sets are provided. First, let
S(A,B) be similarity measure between A 2 IFSs(X) and
B 2 IFSs(X). The meaning of all the signs in the following
are same as those in the last section.

Chen (1995, 1997) proposed the concept of similarity
measures between vague sets and defined its expression
SC(A,B) as follows:

SCðA;BÞ ¼ 1�

Xn

i¼1
jSAðxiÞ � SBðxiÞj

2n
ð1Þ
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Here SA(xi) = tA(xi) � fA(xi) and SB(xi) = tB(xi) � fB(xi),
called Core of A and B or degree of support of A and B
respectively, SA(xi) 2 [�1,1], SB(xi) 2 [�1,1]. Chen believes
that the bigger SC(A,B) is, the more similar A and B

are, but when A = {(x, 0,0)} and B = {(x, 0.5,0.5)}, we
get SC(A,B) = 1 according to formula (1), indicating A is
same as B, it is obviously counter-intuitive, which both
Hong and Kim (1999) and Fan and Zhangyan (2001)
mentioned. SC(A,B) concerns only the degree of support.
For SC(A,B), we have tA � fA = tB � fB) SC(A,B) � 1,
that is to say if degree of support of A is equal to degree
of support of B, then A and B will be the same, which
leads to a series of cases satisfying tA � fA = tB � fB and
then SC(A,B) = 1, all of which are counter-intuitive
except the case of A = B. SC(A,B) is too rough a measure
of the degree of similarity. We found that the exis-
tence of counter-intuitive cases results from the circum-
stance that SC(A,B) does not satisfy property condition
P2.

Hong and Kim (1999) and Fan and Zhangyan (2001)
proposed new similarity measures SH and SL as follows.
Together these definitions could overcome the problem
occurring in SC
SOðA;BÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i�1
ðtAðxiÞ � tBðxiÞÞ2 þ ðfAðxiÞ � fBðxiÞÞ2

2n

s

¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i�1
½ðtAðxiÞ � fAðxiÞÞ2 þ ðtBðxiÞ � fBðxiÞÞ2 � 2ðtBðxiÞ � fAðxiÞÞðtAðxiÞ � fBðxiÞÞ�

2n

s
ð4Þ
SH ðA;BÞ¼ 1�

Xn

i¼1
ðjtAðxiÞ� tBðxiÞjþ jfAðxiÞ� fBðxiÞjÞ

2n
ð2Þ

SLðA;BÞ¼ 1�

Xn

i¼1
jSAðxiÞ�SBðxiÞj

4n

�

Xn

i¼1
jtAðxiÞ� tBðxiÞjþ jfAðxiÞ� fBðxiÞj

4n
ð3Þ

SH focuses on the difference between tA and tB as well
as the difference between fA and fB. Supposing A, B, C

and D are vague sets. For SH, if jtA(xi) � tB(xi)j =
jtC(xi) � tD(xi)j and jfA(xi) � fB(xi)j = jfC(xi) � fD(xi)j, then
SH(A,B) = SH(C,D), because of the existence of sign
of absolute value, for jtA(xi) � tB(xi)j, jtC(xi) � tD(xi)j,
jfA(xi) � fB(xi)j or jfC(xi) � fD(xi)j, SH cannot distinguish
positive difference from negative difference, so there are
still counter cases (type I) for SH as follows: Supposing
A = {(x, 0.3, 0.3)}, B = {(x, 0.4, 0.4)}, C = {(x, 0.3,0.4)}
and D = {(x, 0.4,0.3)}. According to formula (2), we have
SH(A,B) = SH(C,D) = 0.9, which is not intuitively consis-
tent. In addition, when

jtAðxiÞ � tBðxiÞj þ jfAðxiÞ � fBðxiÞj
¼ jtCðxiÞ � tDðxiÞj þ jfCðxiÞ � fDðxiÞj;

SHðA;BÞ ¼ SH ðC;DÞ
occurs, another type of counter-intuitive case (type II)
occurs where A = {(x, 1,0)}, B = {(x, 0,0)} and C = {(x,
0.5,0.5)}, SH(A,B) = SH(C,B) = 0.5.

SL has inherited strengths from SC and SH, overcomes
their counter cases concerning both degree of support
and the differences between tA and tB as well as that
between fA and fB. SL, compared with SH, displays prefer-
ence to tA 6 tB, 1 � fA P 1 � fB case under the condition of
the same difference between membership degrees as well
as the same difference of non-membership degrees, which
actually enhances the distinguish ability between positive
difference and negative difference between membership or
between non-membership degrees, better than SC and SH,
more consistent with intuition, but still cannot avoid
limitations of SC and SH completely. If jSA(xi) � SB(xi)j +
jtA(xi) � tB(xi)j + jfA(xi) � fB(xi)j = jSC(xi) � SD(xi)j +
jtC(xi) � tD(xi)j + jfC(xi) � fD(xi)j, then SL(A, B) =
SL(C,D), which leads to the counter-intuitive case such
as when A = {(x, 0.4,0.2)}, B = {(x, 0.5,0.3)} and C =
{(x, 0.5,0.2)}, SL(A,B) = SLH(A,C) = 0.95, which does
not seem reasonable.

Yanhong et al. (2002) proposed a new similarity mea-
sure SO as follows:
SO emphasizes the degree of support, the difference be-
tween tA and tB, and the difference between fA and fB, SO

could avoid the counter-intuitive cases of SC, type II of
SH and SL, but has the same counter-intuitive cases as type
I of SH (see Appendix 1), which results from the same
reason as SH.

Dengfeng and Chuntian (2002) proposed their similarity
measure of IFSs, which we call SDC. They applied this mea-
sure to pattern recognition. This measure was originally
presented as a form of weighted similarity measure. For
comparability, we change it into normal form (i.e. every
element is of the same importance), and thus SDC is
SDCðA;BÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
jwAðxiÞ � wBðxiÞjp

n

p

s
ð5Þ

Here p is a parameter,
wAðxiÞ ¼
tAðxiÞ þ 1� fAðxiÞ

2
; wBðxiÞ ¼

tBðxiÞ þ 1� fBðxiÞ
2

In fact, Dengfeng and Chuntian first converted A and B

into ordinary fuzzy sets wA(xi) and wB(xi), then applied
Minkowski distance to calculate similarity degree of fuzzy
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sets. When p = 1, SDC = SC. No matter what value p takes,
SDC has the same type of counter-intuitive cases as SC.
wA(xi) and wB(xi) are actually median values of interval
[tA(xi),1 � fA(xi)] and [tB(xi), 1 � fB(xi)] respectively. We
could also explain the con cases of SDC as follows: if median
values of two intervals for IFSs are equal to each other, then
SDC = 1, and thus there will be a lot of counter-intuitive
cases, and SDC measures similarity a bit roughly. Mitchell
(2003) presented other counter-intuitive cases for SDC,
similar in nature to those of SC. The existence of counter-
intuitive cases results from SDC not satisfying property
condition – P2 strictly, which is the same as with SC.

Mitchell (2003) gave a simple modification of SDC and
corrected SDC’s problem. He adopted a statistical viewpoint
and interpreted A and B as ensembles of ordered member-
ship functions which fill the space between tA(xi) and
1 � fA(xi) as well as between tB(xi) and 1 � fB(xi). Let
qt(A,B) and qf(A,B) denote, respectively, the similarity
measures between the low membership function tA(xi) and
tB(xi) as well as between the high membership function
1 � fA(xi) and 1 � fB(xi):

qtðA;BÞ ¼ SDCðtAðxiÞ; tBðxiÞÞ;
qf ðA;BÞ ¼ SDCð1� fAðxiÞ; 1� fBðxiÞÞ:

Then, the modified SDC, called SHB, is as follows:

SHBðA;BÞ ¼
1

2
ðqtðA;BÞ þ qf ðA;BÞÞ ð6Þ

In fact, SHB(A,B) (when p = 1 or for one-element set) =
SH(A,B), so SHB has the same two types of counter cases
as SH (see Appendix 1). For the same reason, SHB has
the same counter cases as SH.

To overcome the weakness of SDC, Zhizhen and Pengfei
(2003) proposed Sp

eðA;BÞ, Sp
s ðA;BÞ and Sp

hðA;BÞ as follows:

Sp
eðA;BÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ð/tðxiÞ þ /f ðxiÞÞp

n

p

s
ð7Þ

Here /t(xi) = jtA(xi) � tB(xi)j/2, /f(xi) = j(1 � fA(xi))/2 �
(1 � fB(xi))/2j. This measure makes use of two end points
of the subinterval in IFSs to define similarity measures,
focusing on the difference between tA and tB as well as dif-
ference between fA and fB. When p = 1 or for one-element
set, Sp

eðA;BÞ ¼ SHBðA;BÞ; Sp
eðA;BÞ ¼ SH ðA;BÞ. So Sp

e has
same type of counter-intuitive cases as SHB and SH.

Sp
s ðA;BÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðus1ðxiÞ þ us2ðxiÞÞp

n

p

s
ð8Þ

us1ðxiÞ ¼ jmA1ðxiÞ � mB1ðxiÞj=2

us2ðxiÞ ¼ jmA2ðxiÞ � mB2ðxiÞj=2

mA1ðxiÞ ¼ ðtAðxiÞ þ mAðxiÞÞ=2

mB1ðxiÞ ¼ ðtBðxiÞ þ mBðxiÞÞ=2

mA2ðxiÞ ¼ ðmAðxiÞ þ 1� fAðxiÞÞ=2

mB2ðxiÞ ¼ ðmBðxiÞ þ 1� fBðxiÞÞ=2

mAðxiÞ ¼ ðtAðxiÞ þ 1� fAðxiÞÞ=2

mBðxiÞ ¼ ðtBðxiÞ þ 1� fBðxiÞÞ=2
For the interval [tA(xi), 1 � fA(xi)] in A, mA(xi) is the median
value of the interval. In this case, the interval is divided into
two subintervals, denoted as [(tA(xi),mA(xi))] and [mA(xi),
1 � fA(xi)], mA1(xi) and mA2(xi) are median values of the
two subintervals separately, so do mB(xi), mB1(xi) and
mB2(xi). So the formula (8) could avoid the problem of each
interval having equal median values, but SDC has this prob-
lem. For Sp

s , when A = {(x, 0.4, 0.2)}, B = {(x, 0.5,0.3)} and
C = {(x, 0.5,0.2)}, Sp

s ðA;BÞ ¼ Sp
s ðA;CÞ ¼ 0:95, it does not

seem reasonable, and is same as for SL(A,B).
Sp

h makes full use of known information on IFSs such as
length of subinterval and the median value of subinterval,
we show the form without weight of Sp

hðA;BÞ for compara-
bility as follows:

Sp
hðA;BÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðg1ðiÞ þ g2ðiÞ þ g3ðiÞÞ

p

3n

p

s
ð9Þ
g1(i) = /t(xi) + /f(xi) (occurring in Se) or g1(i) =
us1(xi) + us2(xi) (occurring in Sp

s ),
p

g2(i) = wA(xi) � wB(xi) (occurring in SDC),
g3(i) = max(lA(i), lB(i)) � min(lA(i), lB(i))
denotes dissimilarity degree of the length, among which
lA(i) = (1 � fA(xi) � tA(xi))/2, lB(i) = (1 � fB(xi) � tB(xi))/2.
Which is relative powerful methods for considering more
information to measure the similarity degree of IFSs, Sp

s

can avoid all the cons cases that the above similarity
measures have.

Hung and Yang (2004) presented three new similarity
measures between IFSs based on Hausdorff distance:

S1
HY ðA;BÞ ¼ 1� dH ðA;BÞ ð10Þ

S2
HY ðA;BÞ ¼ ðe�dH ðA;BÞ � e�1Þ=ð1� e�1Þ ð11Þ

S3
HY ðA;BÞ ¼ ð1� dH ðA;BÞÞ=ð1þ dHðA;BÞÞ ð12Þ

Here dH ðA;BÞ¼ 1
n

Pn
i¼1 maxðjtAðxiÞ� tBðxiÞj; jfAðxiÞ� fBðxiÞjÞ.

For S1
HY , S2

HY and S3
HY , all of them face the counter-intuitive

cases of SL and type I of SH. For S1
HY , S2

HY and S3
HY ,

based on one-element IFS, if max(jtA(xi) � tB(xi)j, jfA(xi) �
fB(xi)j) = max(jtC(xi) � tD(xi)j, jfC(xi) � fD(xi)j), then
SHY(A,B) = SHY(C,D). It is obvious that a lot of cases
satisfy these conditions, so the SHY series measure simi-
larity too roughly, leading to counter-intuitive cases.
Moreover, S1

HY , S2
HY and S3

HY admit SHY(A,B) = 0 when
A = [(x, 1,0)] and B = [(x, 0,0)], which results from that
S1

HY , S2
HY and S3

HY disobeying similarity measure property
condition – P5.

4. Example for selection procedure

We demonstrate the selection procedure of similarity
measures by synthetic data in a hiring decision. The prob-
lem is involved in 3 applicants (Antonio, Fabio, Alberto)
for a position, each is evaluated over four attributes, which
are experience in the specific job function (A1), Educational
background (A2), adaptability (A3), and aptitude for team-
work (A4).
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We obtain the decision matrix A as follows

We use the ideas of grey relation analysis presented by
Julong (1982) for choosing the best candidate for the posi-
tion, but when calculating the similarity, replace grey rela-
tional coefficient r(XO(k),Xi(k)) between the reference
sequence XO and the alternate sequence Xi at point k using
some similarities measure method. ri denotes the degree of
similarity between the ith alternative Xi and reference
sequence X0. The optimal alternative rt = max16i6mri.

The paper takes the weight of each attribute as 1. The
reference sequence X0 as follows is composed of the opti-
mal interval value of indicator over all alternatives

X 0 ¼ ½0:4; 0:7� ½0:5; 0:5� ½1; 1� ½0:5; 0:8�½ �

Among the existing similarity measures, We would like
to choose among SC, SDC, SH, SL and Sp

h for they focus
on different difference as showed in Appendix 3, just using
notation here, that is to say, SC focuses on C3, SDC focuses
on C2, SH focuses on C1, SL focuses on C1 and C3, and
Sp

hðA;BÞ focuses on C1, C2 and C3.
If you focus on waver, perhaps some VIP did not show

their support or reject clearly, then Sp
h, which considers 1 �

tA(xi) � fA(xi), might be the best. If you feel jtA(xi) � fA(xi)j
should be the primary focus, in which case you might
choose SC or SL etc. But it is not enough just based above
consideration, at the same time, we should pay attention to
characteristics of our data, we have to check if there lie
data types that some similarity measure does not work.
in our data. In fact, our data include some data types that
SC, SDC, SH and SL does not work. The detailed explana-
tion is omitted here. So Sp

hðA;BÞ is our best solution.
For comparison, we show the final results of the above

five similarity measures as in Table 1.
You can see, by SC, SDC, SH, SL, the optimal alterna-

tive is Antonio, but by Sp
hðA;BÞ approach, the optimal

alternative rt = max16i6mri = r3, that is Alberto. There lie
different results based on different solutions. In a word,
the selection procedure is very necessary and important.
Table 1
The optimal alternate based on five different similarity measures

1r 2r 3r tr

),( BASC 0.838 0.813 0.813 0.838

),( BASDC 0.838 0.813 0.813 0.838

),( BASH 0.838 0.813 0.813 0.838

),( BASL 0.838 0.813 0.813 0.838
),( BAS p

h 0.846 0.838 0.854 0.854
5. Conclusion

This paper compared and analyzed much of the research
published on similarity measures between IFSs/vague sets.
Although the comparison is based on single-element sets,
it is the basis of that of the multi-element sets (the counter
cases of multi-element sets can be constructed according
to that of one-element counter cases or sets) and can dem-
onstrate drawbacks of some similarity measures accurately
and thoroughly. Analysis results based on multi-element
sets are apt to hide shortcomings because of complexity.
At the same time, comparisons based on single-element
sets are simple, direct, and easy to understand. Based on
the comparison and analysis in last section, we pro-
vided summary information of similarity measures as
Appendices 1–3.

The distinguishability of a similarity measure is deter-
mined by expression form and the information that expres-
sion contains or focuses on. Based on Appendices 1 and 2,
we know the more the information that the similarity mea-
sures focus on, the more powerful their distinguishability.
There is a lot of information applied to discern similarity
between IFSs/vague sets by existing similarity measures,
including difference of degree of support, difference of tA

and tB, difference of fA and fB, median values of intervals
or subintervals and length of interval. As to which similar-
ity measures focus on what information, see Appendix 3.
We draw the conclusion that we need to explore new points
of view and need similarity measures that contain more
information if we want them to be more effective. In addi-
tion, it is necessary to satisfy the five property conditions
strictly for similarity measure, or, counter-intuitive cases
are apt to occur. Vague (intuitionistic fuzzy) sets have the
advantage of being able to consider waver (degree of hesi-
tancy), but existing similarity measures have not yet con-
sidered waver. If they did so, perhaps better performance
might be obtained.

Each similarity measure expression has its own measur-
ing focus as showed in Appendix 3 although they all eval-
uate the similarities in fuzzy/vague sets. You can also find
in Appendix 2 that the results of similarity measures are
similar except some counter-intuitive cases, we summarize
the conditions these measures are similar here: (1) They
all focus on differences between intuitionistic fuzzy/vague
sets A and B based on the comparison of interval value
[tA 1 � fA] and [tB 1 � fB]; (2) they can meet all or most
of the properties condition of similarity measure in Defini-
tion 2.2.1, that is P1–P5.

Among the existing 12 similarity measures between
IFSs/vague sets, it is obvious that Sp

hðA;BÞ has no coun-
ter-intuitive cases, but we still cannot say Sp

hðA;BÞ is the
best and should replace others. On the contrary, we think
all existing similarity measures are valuable. There exists
two reasons behind this thought: first, a new similarity
measure is proposed, always accompanying with explana-
tions of overcoming counter-intuitive cases of other meth-
ods. In all the existing involved papers, it is really difficult
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to find all the counter-intuitive cases just by enumerating.
Second, there are different selection criteria and require-
ments during specific application procedure of similarity
measure. It is important that you set up your viewpoints
that you focus on when you measure similarity. If you
focus on waver, then Sp

h, which considers 1 � tA(xi) �
fA(xi), might be best. Perhaps you feel jtA(xi) � fA(xi)j
should be the primary focus, in which case you might
choose SC and SL, etc. In a word, different needs results
in different selection, different selection results in a slightly
Expressions

(1)
SCðA;BÞ ¼ 1�

Xn

i¼1
jSAðxiÞ � SBðxiÞj

2n
SA(xi) = tA(xi) � fA(xi), SB(xi) = tB(xi) � fB(xi)

(2) SH ðA;BÞ ¼ 1�
Xn

i¼1
ðjtAðxiÞ � tBðxiÞj þ jfAðxiÞ � fBðxiÞjÞ

2n

(3) SLðA;BÞ ¼ 1�
Xn

i¼1
jSAðxiÞ � SBðxiÞjÞ

4n �
Xn

i¼1
jtAðxiÞ�tBðxiÞjþjf

4n

(4) SOðA;BÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i�1
ðtAðxiÞ � tBðxiÞÞ2 þ ðfAðxiÞ � fBðxiÞÞ

2n

r

(5) SDCðA;BÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
jwAðxiÞ � wBðxiÞjp

n
p

r

wAðxiÞ ¼
tAðxiÞ þ 1� fAðxiÞ

2
wBðxiÞ ¼

tBðxiÞ þ 1� fBðxiÞ
2

(6) SHBðA;BÞ ¼ 1
2 ðqtðA;BÞ þ qf ðA;BÞÞ

qt(A,B) = SDC(tA(xi), tB(xi))

qf(A,B) = SDC(1 � fA(xi),1 � fB(xi))

(7) Sp
eðA;BÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ð/tðxiÞþ/f ðxiÞÞp

n

p

r
/t(xi) = jtA(xi) � tB(xi)j/2
/f(xi) = j(1 � fA(xi))/2 � (1 � fB(xi))/2j

(8) Sp
s ðA;BÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðus1ðxiÞþus2ðxiÞÞp

n
p

r
us1(xi) = jmA1(xi) � mB1(xi)j/2,

us2(xi) = jmA2(xi) � mB2(xi)j/2
mA1(xi) = (tA(xi) + mA(xi))/2,

mB1(xi) = (tB(xi) + mB(xi))/2

mA2(xi) = (mA(xi) + 1 � fA(xi))/2,

mB2(xi) = (mB(xi) + 1 � fB(xi))/2

mA(xi) = (tA(xi) + 1 � fA(xi))/2,

mB(xi) = (tB(xi) + 1 � fB(xi))/2

Appendix 1. Similarity measure expressions and counter-intuitiv
different measurement results. In addition, we should not
only consider specific needs but also pay attention to their
drawbacks when we applied them into practice. Appendix
1 is good reference, contributing to helping you select a bet-
ter one among existing similarity measures of IFSs/vague
sets.

Similarity measures between IFSs/vague sets is a more
realistic and promising way to solve some problem, we
should try our best to improve them and apply them into
practice.
Counter-intuitive cases

A = [(x, 0,0)]B = [(x, 0.5,0.5)] · SC(A,B) = 1

Type I:
A = {(x, 0.3,0.3)}, B = {(x, 0.4, 0.4)}
C = {(x, 0.3,0.4)}, D = {(x, 0.4,0.3)} · SH(A,B)

= SH(C,D) = 0.9
Type II:
A = {(x, 1,0)}, B = {(x, 0,0)}
C = {(x, 0.5,0.5)} · SH(A,B) = SH(C,B) = 0.5

AðxiÞ�fBðxiÞj
A = {(x, 0.4,0.2)}, B = {(x, 0.5, 0.3)}
C = {(x, 0.5,0.2)} · SL(A,B) = SL(A,C) = 0.95ffiffiffi

2

Same as that of Type I of SH(A,B)

Same as that of SC(A,B)

Same as that of SH(A,B)

Same as that of SH(A,B)

Same as that of SL(A,B)

(continued on next page)

e cases



Appendix 1 (continued )

Expressions Counter-intuitive cases

(9) Sp
hðA;BÞ ¼ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðg1ðiÞ þ g2ðiÞ þ g3ðiÞÞ

p

3n
p

r
g1(i) = /t(xi) + /f(xi) (occurring in Sp

e) or

g1(i) = us1(xi) + us2(xi) (occurring in Sp
s )

g2(i) = jwA(xi) � wB(xi)j (occurring in SDC)

g3(i) = max(lA(i), lB(i)) � min(lA(i), lB(i))

lA(i) = (1 � fA(xi) � tA(xi))/2
lB(i) = (1 � fB(xi) � tB(xi))/2

(10) S1
HY ðA;BÞ ¼ 1� dH ðA;BÞ Same as that of SL and Type I counter cases of SH

dH ðA;BÞ ¼
1

n

Xn

i¼1
maxðjtAðxiÞ � tBðxiÞj; jfAðxiÞ � fBðxiÞjÞ A = [(x, 1,0)] and B = [(x, 0,0)]

**SHY(A,B) = 1

(11) S2
HY ðA;BÞ ¼ ðe�dH ðA;BÞ � e�1Þ=ð1� e�1Þ Same as dH(A,B) Same as that of SL and Type I counter cases of SH

A = [(x, 1,0)] and B = [(x, 0,0)]
**SHY(A,B) = 1

(12) S3
HY ðA;BÞ ¼ ð1� dH ðA;BÞÞ=ð1þ dH ðA;BÞÞ Same as dH(A,B) Same as that of SL and Type I counter cases of SH

A = [(x, 1,0)] and B = [(x, 0,0)]
**SHY(A,B) = 1

1 2 3 4 5 6

A = [(x, tA, fA)] [(x, 0.3,0.3)] [(x, 0.3,0.4)] [(x, 1,0)] [(x, 0.5,0.5)] [(x, 0.4,0.2)] [(x, 0.4, 0.2)]
B = [(x, tB, fB)] [(x, 0.4,0.4)] [(x, 0.4,0.3)] [(x, 0,0)] [(x, 0,0)] [(x, 0.5,0.3)] [(x, 0.5, 0.2)]
SC 1 0.9 0.5 1 1 0.95
SH 0.9 0.9 0.5 0.5 0.9 0.95
SL 0.95 0.9 0.5 0.75 0.95 0.95
SO 0.9 0.9 0.3 0.5 0.9 0.93
SDC 1 0.9 0.5 1 1 0.95
SHB 0.9 0.9 0.5 0.5 0.9 0.95
Sp

e 0.9 0.9 0.5 0.5 0.9 0.95
Sp

s 0.95 0.9 0.5 0.75 0.95 0.95
Sp�

h 0.93 0.933 0.5 0.67 0.93 0.95
S1

HY 0.9 0.9 0 0.5 0.9 0.9
S2

HY 0.85 0.85 0 0.38 0.85 0.85
S3

HY 0.82 0.82 0 0.33 0.82 0.82

Appendix 2. Demonstration table of counter-intuitive cases (bold italic)

Differences between tA and
tB and between fA and fB (C1)

Differences between median values
of intervals or subintervals (C2)

Difference of degree
of support (C3)

Difference between
length of interval (C4)

SC

p

SH

p

SL

p p

SO

p

SDC

p

SHB

p

Appendix 3. Measuring focus of similarity measure expressions
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Appendix 3 (continued)

Differences between tA and tB

and between fA and fB (C1)
Differences between median values
of intervals or subintervals (C2)

Difference of degree
of support (C3)

Difference between
length of interval (C4)

Sp
e

p

Sp
s

p

Sp�
h

p p p

S1
HY

p

S2
HY

p

S3
HY

p
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