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Abstract

Major approaches to selection decisions include multiattribute utility theory and outranking methods. One of the
most frustrating aspects of research in the relative performance of these methods is that data where the final outcome is
known is not available. In the US, a great deal of effort has been devoted to statistically recording detailed performance
characteristics of major league professional baseball. Every year there has been two to four seasonal competitions, with
known outcome in terms of the proportion of contests won. Successful teams often have diverse characteristics, em-
phasizing different characteristics. SMART, PROMETHEE, and a centroid method were applied to baseball data over
the period 1901-1991. Baseball has undergone a series of changes in style over that period, and different physical and
administrative characteristics. Therefore the data was divided into decades, with the first five years used as a training
set, and the last five years used for data collection. Regression was used to develop the input for preference selection in
each method. Single-attribute utilities for criteria performance were generated from the first five years of data from each
set. Relative accuracy of multicriteria methods was compared over 114 competitive seasons for both selecting the
winning team, as well as for rank-ordering all teams. All the methods have value in supporting human decision making.
PROMETHEE II using Gaussian preference functions and SMART were found to be the most accurate. The centroid
method and PROMETHEE II using ordinal data were found to involve little sacrifice in predictive accuracy. © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the difficulties in comparing the many
multicriteria methods available for analysis is that
there is rarely any way to check the accuracy of the

“Tel.: +1-409-845-2254; fax: +1-409-845-5653.
E-mail address: dolson@tamvml.tamu.edu (D.L. Olson).

methods. This study applies three multicriteria
methods (SMART, PROMETHEE, and a cent-
roid method) to a multicriteria environment where
measured statistics and known outcomes are pre-
sent. At the same time, it must be understood that
these methods have different relative advantages in
dealing with other types of data, including ordinal
data, and cases where not all data is objective. The
intent is not to establish dominance of any one
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method, but rather to compare relative accuracy in
a case of known outcome.

The data used concerns annual competitions in
American major league professional baseball. This
sport has been closely measured for the entire 20th
century, and offers many data points over a
number of criteria. Here we use five criteria that
are often used to describe the abilities of baseball
teams. This data is used to measure the relative
accuracy of multicriteria methods, in this case in
explaining the outcome of each competition. For
each decade, the first five years are used to develop
model parameters. The resulting model is then
tested on the last half of that decade. The reason
for building a model each decade is that baseball
style changes quite dramatically over the years.
While the models could be useful in a predictive
sense to gambling, an industry that is large but
neither open nor socially uplifting, that is by no
means the intent. The comparative study is in-
tended to demonstrate how the three methods
work, and to focus on relative features of each
method.

2. Multiattribute methods

This study will use SMART, a simple linear
model reflecting multiattribute utility theory and
an outranking method (PROMETHEE II using
cardinal criteria). Two other methods that rely on
less complete input data are tested for comparative
purposes. One is PROMETHEE II with data an-
alyzed using an ordinal criterion. The other is the
centroid method is a version of SMART using

swing weighting, using only ordinal input for rel-
ative weight estimation.

2.1. Smart

Multiple attribute utility theory (von Neumann
and Morgenstern, 1947) can be implemented by
the linear model

k
Valuej: E WiSij,
i=1

where for each alternative j, value is measured as
the weighted sum of measures s;; for this alterna-
tive on each of the 7 criteria, weighted by the rel-
ative importance w; which reflects both criterion
importance and measurement scale. Regression
output can be applied directly in this model.

To demonstrate with the 1906 season, using the
National League (consisting of eight teams), the
value function for each team is obtained by using
the regression model over the data period 1901-
1905 for weights w;, and applying this to the scores
s;; for each of the eight teams. Data for the eight
teams on each criterion are presented in Table 1.

The model ranking is quite close to the actual
outcome, although there are two switches (second
and third place, and fifth and sixth place). Possible
explanations include that there might be other
criteria that are not included in the model, as well
as intangible factors such as better management,
better team cooperation, or better performance in
clutch situations. This model reflects MAUT data,
where weights consider both scale of data and
criterion importance.

Table 1

1906 NL Percentage Place Hitting Power Speed Fielding Pitching Value
Intercept —3.4938 Weights: 3.4058 0.0018 0.0003 3.4845 —0.0984

Chicago 0.763 1 0.262 20 283 0.969 1.75 0.7363=1
New York 0.632 2 0.255 15 288 0.963 2.49 0.6117=3
Pittsburgh 0.608 3 0.261 12 162 0.964 2.21 0.6141=2
Philadelphia 0.464 4 0.241 12 180 0.956 2.58 0.4880=4
Brooklyn 0.434 5 0.236 25 175 0.955 3.13 0.4345=6
Cincinnati 0.424 6 0.238 16 170 0.959 2.69 0.4809 =15
St. Louis 0.347 7 0.235 10 110 0.957 3.04 0.3979=7
Boston 0.325 8 0.226 16 93 0.947 3.14 0.3272=28
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The Simple MultAttribute Rating Technique
(SMART_ — Edwards, 1977; von Winterfeldt and
Edwards, 1986; Edwards and Barron, 1994) is a
simplified version of MAUT, where scores are
standardized to a 0-1 scale (with 0 representing
the worst expected performance on a given cri-
terion, and 1 representing the best expected per-
formance). Weights in this case would not reflect
scale, which was eliminated by the standardiza-
tion. Standardized scores are given in the Table 2,
and the regression model run on these standard-
ized scores versus the winning percentage (not
standardized). This yielded a different regression
formula, applied to the standardized scores as
shown.

The regression model output yields the weights
given in Table 2, with precisely the same fit and ¢-
scores (except for the intercept). The transformed
values yielded exactly the same value scores. This
implies that if scores are standardized to a 0-1
scale (or any other scale) consistent across all
variables, the resulting regression coefficients will
change to reflect this change of scale, and the final
dependent variable values obtained will be identi-
cal. While MAUT allows greater flexibility in
preference trade-off functions, if a linear MAUT
model is used, transformation as applied in
SMART yields precisely the same result. In
MAUT, weights reflect both scale and importance.
In SMART, scales are transformed to a common
basis, so weights reflect importance. Note that this
study does not reflect the psychological aspects of
relative weight, where if all of the alternatives are
very close in performance on a particular criterion,
there is a tendency to place less emphasis on that
criterion.

2.2. Outranking methods

The outranking method (Roy (1971, 1978))
PROMETHEE (Brans and Vincke, 1985) utilizes a
function reflecting the degree of advantage of one
alternative over another, along with the degree of
disadvantage that same alternative has with re-
spect to the other alternative it is compared
against. Data are input in a spreadsheet form as
shown in Table 3.

PROMETHEE requires that weights for each
criterion be entered, and that criteria types be se-
lected. The weights are meant to be rough indica-
tions of relative importance. Here we have used
the proportions obtained from the standardized
regression used in the SMART analysis (from
which scale of measure was removed from weights,
leaving only relative importance), and normalized
them so that they add to 1.0. In PROMETHEE,
when the Type 1 criterion is used, only relative
advantage matters. When Type 6 (Gaussian dis-
tribution based on the standard deviation, where
small differences have little importance, but im-
portance increases following the normal distribu-
tion as differences increase) is used, differences play
a major role in establishing outranking relation-
ships. There are six options allowing the user to
express meaningful differences by minimum gaps
between observations. The simplest criterion type
is I, which calculates the outgoing flow by identi-
fying the proportion of the weights of criteria
where the base alternative has advantage over the
other alternatives, and incoming flow as the pro-
portion of weights of criteria where the base al-
ternative has a disadvantage relative to other
alternatives. Total flow is outgoing flow minus

Table 2

1906 NL Percentage Place Hitting Power Speed Fielding Pitching Value
Intercept 0.1107 Weights: 0.2384 0.0755 0.0660 0.1464 0.2332

Chicago 0.763 1 0.5429 0.3488 0.9579 1.0238 1.1013 0.7363=1
New York 0.632 2 0.4429 0.2326 0.9842 0.8810 0.7890 0.6117=3
Pittsburgh 0.608 3 0.5286 0.1628 0.3211 0.9048 0.9072 0.6141=2
Philadelphia 0.464 4 0.2429 0.1628 0.4158 0.7143 0.7511 0.4880 =4
Brooklyn 0.434 5 0.1714 0.4651 0.3895 0.6905 0.5190 0.4345=6
Cincinnati 0.424 6 0.2000 0.2558 0.3632 0.7857 0.7046 0.4809 =5
St. Louis 0.347 7 0.1571 0.1163 0.0474 0.7381 0.5570 0.3979=7
Boston 0.325 8 0.0286 0.2558 —0.0421 0.5000 0.5148 0.3272=28
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Table 3
Cl C2 C3 C4 C5
Criterion Hitting Power Speed Fielding Pitching
Min/Max Max Max Max Max Min
Type 1 1 1 1 1
Weight 0.31 0.10 0.09 0.19 0.31
Al Chicago 0.262 20 283 0.969 1.75
A2 New York 0.255 15 288 0.963 2.49
A3 Pittsburgh 0.261 12 162 0.964 2.21
A4 Philadelph 0.241 12 180 0.956 2.58
A5 Brooklyn 0.236 25 175 0.955 3.13
A6 Cincinnati 0.238 16 170 0.959 2.69
A7 St. Louis 0.235 10 110 0.957 3.04
A8 Boston 0.226 16 93 0.947 3.14

incoming flow. Type VI involves more complex
calculations, reflecting the degree of relative ad-
vantage. To demonstrate, we use Type I calcula-
tions (see Table 4).

To demonstrate calculation of preference indi-
ces, Chicago is better than New York in hitting,
power, fielding and pitching, with respective
weights of 0.31, 0.10, 0.19 and 0.31, totaling an
outgoing flow of 0.91 for Chicago over New York.
New York is better in stolen bases, with a weight
of 0.09, giving a preference index of 0.09 for New
York over Chicago.

Leaving preference flows are simply the average
of outgoing flows for each alternative. The sum of
the Chicago row in Table 4 is 6.81, versus 7 other
alternatives. The average, 6.81/7=0.97286, which
is the Leaving Flow for Chicago. The Entering
Flow for Chicago is the average of the column for
that alternative, or 0.19/7=0.027144. The Net
Preference Flow for Chicago is the Leaving Flow

minus the Entering Flow, or 0.97286 — 0.02714 =
0.94571 (see Table 5).

2.2.1. PROMETHEE I

The PROMETHEE 1 method is designed to
provide a partial ranking. Partial rankings focus on
the best choice, not on a complete ranking. Pairs of
alternatives are categorized by preference, indif-
ference or incomparability. Two rankings are ob-
tained. The positive outranking flows are used as
the basis for the first ranking. Preference requires
outflow of the base alternative to be greater than
the outflow of the other alternative. The alterna-
tives are indifferent in value if the outflows are
equal. Preference in the second ranking requires
inflow of the base alternative to be strictly less than
inflow of the other alternative. The alternatives are
indifferent in value if inflows are equal.

The PROMETHEE 1 partial ranking is the in-
tersection of these two rankings. For alternative a

Table 4
PI preference indices
Actions Al A2 A3

Al Chicago 0.00 0.91 1.00
A2 New York 0.09 0.00 0.19
A3 Pittsburgh 0.00 0.62 0.00
A4 Philadelph 0.00 0.00 0.09
AS Brooklyn 0.10 0.10 0.19
A6 Cincinnati 0.00 0.10 0.19
A7 St. Louis 0.00 0.00 0.00
A8 Boston 0.00 0.10 0.10

A4 AS A6 A7 A8

1.00 0.90 1.00 1.00 1.00
0.81 0.90 0.71 0.81 0.90
0.62 0.81 0.62 0.81 0.90
0.00 0.90 0.71 0.81 0.90
0.10 0.00 0.19 0.50 0.81
0.10 0.81 0.00 0.81 0.90
0.00 0.50 0.00 0.00 0.90

0.10 0.00 0.00 0.10 0.00
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Table 5

Preference flows

Actions Leaving Entering Net
Chicago 0.97286 0.02714 0.94571
New York 0.63000 0.26143 0.36857
Pittsburgh 0.62571 0.25143 0.37429
Philadelph 0.48714 0.39000 0.09714
Brooklyn 0.28429 0.68857 —-0.40429
Cincinnati 0.41571 0.46143 —-0.04571
St. Louis 0.20000 0.69143 —-0.49143
Boston 0.05714 0.90143 —0.84429

to outrank alternative b, ¢ must have a better
positive flow than b, or ¢ must have a smaller
negative flow than alternative b, while it is at least
equal on the other flow. The alternatives would be
indifferent if both positive and negative outflows
were equal. Otherwise, the alternatives are con-
sidered incomparable.

In the above example, Chicago has a better
leaving flow (outflow, or positive flow) than any
other alternative, and a lower entering flow (in-
flow, or negative flow) than any other alternative,
and therefore Chicago outranks all of the other
seven alternatives.

New York has a better leaving flow than any
other remaining alternative, but Pittsburgh has a
better entering flow than New York. Therefore,
these two alternatives are incomparable. However,
both outrank all of the other five alternatives.

Philadelphia outranks all of the other five al-
ternatives. Cincinnati, which actually finished
sixth, has both a better leaving and entering flow
than does Brooklyn, which actually finished fifth.
Therefore, Cincinnati outranks Brooklyn. Other-
wise, the rankings are in order of finish.

The PROMETHEE 1 partial order for these
eight alternatives is therefore:

1 Chicago 1 actual
2 New York & Pittsburgh 2 & 3 actual
4 Philadelphia 4 actual
5 Cincinnati 6 actual
6 Brooklyn 5 actual
7 St. Louis 7 actual
8 Boston 8 actual

PROMETHEE 1 partial order based on the
Type VI criterion are only slightly different:

1 Chicago 1 actual
2 New York & Pittsburgh 2 & 3 actual
4 Philadelphia & Cincinnati 4 & 6 actual
6 Brooklyn 5 actual
7 St. Louis 7 actual
8 Boston 8 actual

Because the partial order can include a number
of incomparable pairs of alternatives, it will not
guarantee a complete ranking of alternatives.
Therefore, it is evaluated on the basis of first place
(and may have multiple alternatives ranked as ei-
ther indifferent or incomparable in first place). In
this case PROMETHEE 1 analysis identified the
correct first-place team with both Type I and Type
VI criteria.

2.2.2. PROMETHEE I
Net flows are the basis for the PROMETHEE

II ranking. In this case, the ranking is:

1 Chicago 1 actual

2 Pittsburgh

3 New York

4 Philadelphia

5 Cincinnati

6 Brooklyn

7 St. Louis

8 Boston

03 WD AN BN W

This ranking (the same in this case for both Type I
and Type VI criteria) is exactly the same as the
ranking obtained emulating the MAUT method,
with only two rank reversals among the eight po-
sitions.

2.3. The centroid method

The centroid method uses the same overall
model, using ordinal input information. The core
idea is to minimize the maximum error by finding
the weights in the center of the region bounded by
decision-maker ordinal ranking of factors. Olson
and Dorai (1992) and Barron and Barrett (1996)
applied the idea of the centroid to preference input
based entirely on ordinal preference ranking of
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criteria (within which single-attribute utility ranges
could be considered). While continuous weight
estimation methods, such as multiattribute utility
theory models or analytic hierarchy models, would
be expected to be more accurate estimators if
preference input were accurate, the centroid ap-
proach is based on more reliable input, and is less
subject to the errors introduced by inaccurate
weight assessment. Flores et al. (1992) found that
the centroid approach was useful when there were
four or more criteria being considered, when cri-
teria were close in relative importance, and when
time available for analysis was short.

The only difference between the centroid
method as implemented here and SMART is that
the weights for the five measures are calculated
differently. The idea behind the centroid approach
is to identify the weights with the minimum-
maximum error from the extreme points implied
by the order of relative importance of the criteria.
Given that scale has been eliminated by the nor-
malization of measures in the SMART method
above, the weights here would reflect relative im-
portance of the criteria. For the 1901-1905 era, the
relative weights identified from regression on the
normalized data were:

Hitting 0.314 Rank 1
Home runs 0.099 Rank 4
Stolen bases 0.087 Rank 5
Fielding average 0.193 Rank 3
Earned run average 0.307 Rank 2

The centroid is calculated by taking the mean of
the extreme sets of weights. In this case, these ex-
tremes are as shown in Table 6.

These weight estimates are then applied exactly
as they were in SMART (see Table 7).

These values differ from those obtained by
SMART weights, of course, but in this case yield
the same rank order for all eight teams. Input data
on relative weights with the centroid approach
requires only ordinal input, expected to be more
robust than continuous data obtained from
SMART. Here, we have precise measures, so the
centroid approach is expected to be less accurate
than SMART in predicting rank order. Edwards
and Barron (1994) reported very little loss in ac-
curacy in moving from SMART to the centroid
approach (SMARTER), however. We will com-
pare the centroid results with SMART results to
compare relative accuracy loss due to the less
precise input.

Table 6
Hitting Home runs Stolen bases Fielding Earned runs

1 1 0 0 0 0
2 12 0 0 0 1/2
3 1/3 0 0 1/3 1/3
4 1/4 1/4 0 1/4 1/4
5 1/5 1/5 1/5 1/5 1/5
Average 0.4567 0.09 0.04 0.1567 0.2567

Table 7
1906 NL Percentage Place Hitting Power Speed Fielding Pitching Value

Weights: 0.4567 0.09 0.04 0.1567 0.2567

Chicago 0.763 1 0.5429 0.3488 0.9579 1.0238 1.1013 0.7607 =1
New York 0.632 2 0.4429 0.2326 0.9842 0.8810 0.7890 0.6031=3
Pittsburgh 0.608 3 0.5286 0.1628 0.3211 0.9048 0.9072 0.6435=2
Philadelphia 0.464 4 0.2429 0.1628 0.4158 0.7143 0.7511 0.4469 =4
Brooklyn 0.434 5 0.1714 0.4651 0.3895 0.6905 0.5190 0.3771=6
Cincinnati 0.424 6 0.2000 0.2558 0.3632 0.7857 0.7046 0.4328=5
St. Louis 0.347 7 0.1571 0.1163 0.0474 0.7381 0.5570 0.3427="7
Boston 0.325 8 0.0286 0.2558 —-0.0421 0.5000 0.5148 0.2449=28




582 D.L. Olson | European Journal of Operational Research 130 (2001) 576-587

3. Data

Each year there is a professional baseball sea-
son. The length of this season has increased from
140 scheduled games per team per year in 1901 to
154 games per year for most of the century, and
currently is up to 162 games per year. Data was
taken from Thorn and Palmer (1995). There were
some shortened seasons: in 1918 due to World
War I, and in 1981 due to a professional baseball
players’ strike. The 1918 season was played in one
short season, and was included in the analysis. The
1981 season was split into two halves, and thus the
team with the best season record did not neces-
sarily win. (In fact, St. Louis and Cincinnati had
the best overall records in their divisions, but won
neither of the split seasons, so were not first-place
finishers.) For this reason, the 1981 season was not
included. There were eight teams per league until
the 1960s, when expansion led to 10 teams per
league, and on to four divisions of six or seven
teams each. Currently this has been expanded to
six divisions. Despite these changes, for the most
part major league baseball has been quite stable.

There is detailed statistical data available for
each team (indeed for each player) each season on
many measures. The essence of baseball is that it
involves offensive, defensive, and pitching team
performance, and the better measures for a team,
the better expected winning performance. Offen-
sive performance is primarily represented by bat-
ting average (base hits per chances), but is
supplemented by a power measure (number of
home runs) and a measure of speed (number of
stolen bases). Fielding is measured by the number
of successful fielding events divided by the total
number of chances. Pitching effectiveness is mea-
sured by the number of earned runs given up per
nine innings pitched (earned run average, or
ERA). While there are many other specific mea-
sures available that capture other details of team
performance, these five measures are commonly
used and capture the majority of relative team
differences. In this study, these five measures are
used as criteria that differentiate between the teams
that competed against each other each season.

While professional baseball has been quite sta-
ble, there have been changes in the relative em-

phasis. In the first two decades of the 20th century,
there were notably fewer home runs and many
more stolen bases than was the case thereafter. For
the next four decades, the emphasis was on power
rather than speed. This has been followed by a
reemergence of higher stolen base values. There-
fore, the data has been treated by decade. Fol-
lowing the spirit of expert system methodology,
the first five years of each decade have been used as
the basis for a regression model to measure the
relationship between each of the five independent
variables and team winning percentage (the train-
ing phase). This regression model was then used to
determine preference input for the multiattribute
methods applied to the last five years of each de-
cade (the predictive phase). One adjustment to this
process was used. Because the 1981 season was
much shorter than the others, it was held out, and
the regression model was developed over the pe-
riod 1982-1986, and this result was applied to the
1987-1991 seasons.

4. Data features

The methodology used provides a difficult test
for the multiattribute models. Team performance
is expected to be correlated to relative performance
on the five criteria measured, but also is expected
to be a function of team cooperation and man-
agement. There are a number of intangible fea-
tures that might elude measurement.

Correlations of the data are appended. The
correlation of earned run average (era, or runs
given up by pitching per nine innings) with win-
ning percentage is stronger than for any other
criterion except hitting in the decade 1941-1950.
The correlation between winning percentage and
pitching declined with time after its peak in the
decade 1951-1960. Hitting and fielding have al-
ways had strong correlation with winning per-
centage, with hitting having the strongest
correlation of the two. Power (represented by
home runs, or hr) had a fairly strong correlation
from 1921 to 1980, but dropped over the period
1982-1991. Stolen bases (sb) have had low corre-
lation with winning percentage except in the peri-
od 1951-1960.
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Among criteria, the relationship between power
(hr) and hitting has been quite high, with the ex-
ception of the period 1982-1991. In three of the
decades (the 1930s, 1950s and 1970s) power has
had stronger relationship with winning percentage
than with hitting. Fielding had a strong correlation
with pitching (era) in most decades, but had a
stronger relationship with winning except in the
initial decade. Therefore, while there is some
overlap in criteria, they reflect different aspects of
team performance.

The regression models reflected some changes
over time with respect to coefficients for specific
criteria. Hitting’s f§ coefficient was up to 3.95 in the
period 1941-1945, and dropped below three for
three of the four decades from the 1950s to 1980s.
Home runs and stolen bases had very low f coef-
ficients, in great part due to the difference in
measurement scale from hitting and fielding, which
were measured in proportions. The f coefficient
for era was smaller due to its measure being well
over one hundred times greater than that of hit-
ting.

As far as criteria significance, all were signifi-
cant at the 0.95 confidence level except for stolen
bases (variable sb) in the 1920s and 1950s, and
fielding in the 1940s. The other three measures
were always significant beyond the 0.95 level of
confidence.

The fit of these models is relatively strong, with
the r-square measure being around 0.8. The r-

square measure was stronger until the 1970s. The
decline in model fit may well have been due to
expansion of the number of teams, which were
split into more competitive groupings of slightly
fewer teams than had been the case over the period
1901-1960.

5. Relative accuracy

The methods considered were compared over
the entire data set available, ranging from 1901 to
1991 in nine decades. This involved a total of 114
cases, with case size ranging from six alternatives
to ten alternatives. PROMETHEE 1 generates a
partial order, with potential ties for each position.
If the actual first place team was among those
teams ranked first, the method was given credit for
1/(the number of teams in the first rank). The fit
for selection of the team to finish first is resulted in
Table 8.

These figures show almost no difference be-
tween the multiattribute methods shown. None of
the methods reported here are terribly reliable,
however, as all are roughly capable of predicting
70% of the winning teams.

Another measure of accuracy is obtained by
calculating the sum of absolute differences between
the actual ranking and the model ranking. This
measure reflects the ability of the method to rank
order, not just select the preferred alternative.

Table 8
Seasons Teams SMART PROMI (VI) PROMII (VI) PROMII(I) Centroid
1906-1910 8 7/10 6.83/10 7/10 7/10 7/10
1916-1920 8 7/10 8/10 9/10 510 8/10
1926-1930 8 4/10 4.33/10 4/10 4/10 5/10
1936-1940 8 7/10 7/10 7/10 7/10 7/10
1946-1950 8 7/10 7.5/10 7/10 8/10 7/10
1956-1960 8 7/10 7.33/10 7/10 6/10 6/10
1966-1968 10 6/6 4/6 516 4/6 4/6
1969-1970 6 6/8 6.17/8 6/8 718 6/8
1976-1980 6 9/12 8.83/12 10/12 11/12 10/12
1976-1980 7 6/8 3.5/8 5/8 5/8 6/8
1987-1991 6 7/10 7/10 7/10 8/10 6/10
1987-1991 7 6/10 6.33/10 6/10 6/10 6/10
Total 79/114 77.165/114 80/114 78/114 78/114
Ratio 0.693 0.677 0.702 0.684 0.684
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Table 9

Seasons Teams SMART PROMII (VI) PROMII (I) Centroid
1906-1910 8 53/10 52/10 51/10 57110
1916-1920 8 65/10 60/10 70/10 61/10
1926-1930 8 46/10 52/10 64/10 54/10
1936-1940 8 50/10 54/10 65/10 53/10
1946-1950 8 60/10 58/10 64/10 60/10
1956-1960 8 59/10 57110 71/10 65/10
1966-1968 10 74/6 78/6 7816 7316
1969-1970 6 29/8 27/8 34/8 29/8
1976-1980 6 37114 30/14 35/14 31/14
1976-1980 7 17/6 24/6 2716 31/6
1987-1991 6 44/10 42/10 44/10 63/10
1987-1991 7 61/10 67/10 76/10 73/10
Total 595 601 679 650

PROMETHEE 1 yields a partial order, which is
highly problematic in estimating rank-order.
Results for the other methods are presented in
Table 9.

This data indicates an advantage in ranking
accuracy on the part of SMART and PROM-
ETHEE II using Gaussian data over the methods
using ordinal input.

Table 10 sorts out accuracy using Spearman’s
rho statistic. The difference in ranks for each sea-
son was obtained, with each of the differences
squared and summed. For example, the results for
the 1906 National League season for all methods
demonstrated are shown in Table 10.

Olds’s (1939) limits at the 0.05 level were used
to evaluate significance. These limits are a func-
tion of the number of items ranked. By these
limits, a significant relationship is measured if the

Table 10

Actual rank

=4
=

MAUT

1 Chicago

2 New York
3 Pittsburgh
4 Philadelphia
5 Brooklyn

6 Cincinnati
7 St. Louis

8 Boston

0T LR W —
A OO == O = =0

Sum diff?

sum of squared differences no more than the
following:

Six items limit= 4

Seven items limit= 12
Eight items limit= 22
Ten items limit = 56

The number of cases of significant accuracy at
these levels are given in Table 11.

These measures indicate that as the number of
items ranked increased, the accuracy of the meth-
ods increased for the most part. The most accurate
by this measure was PROMETHEE 1I using cri-
terion type VI (Gaussian), which was significant in
110 out of 114 cases. SMART was significant in 95
cases, the centroid method 92, and PROMETHEE
IT using criterion Type I in 89 cases. The data here
clearly indicates that it is much more difficult to be
significant with fewer numbers of teams. PROM-
ETHEE 11 using criterion Type VI was significant
in all cases except for four involving only six
teams.

Table 11

n  SMART PROMII (VI) PROMII (I) Centroid
6 16 of 30 26 of 30 15 of 30 17 of 30
7 15 of 18 18 of 18 12 of 18 11 of 18
8 58 of 60 60 of 60 56 of 60 59 of 60
10 60f6 6 of 6 6 of 6 Sof 6
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6. Conclusions

This study was intended to demonstrate how
these three methods of preference modeling work
on data with precise measures and known out-
comes. The multiple attribute utility method and
SMART using transformed measure scales (stan-
dardized to have the worst measure equal 0 and
the best measure equal 1) were shown to be
equivalent. Earlier phases of this study seemed to
indicate that the PROMETHEE method was less
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precise than SMART, but final results clearly in-
dicate that the two methods were very similar in
accuracy. PROMETHEE models are more accu-
rate (as expected) is more complete data is used.
The criterion Type 6 uses the standard deviation
of the data, and gives notably more accurate re-
sults than the ordinal input used with criterion
Type 1. Using ordinal weight input with the
centroid method, however, did not result in a
great deal of lost accuracy relative to the SMART
results.

Table 12
Correlations of winning percentage and five criteria by decade®

pct Hitting hr sb Field pet Hitting hr sb Field
1901-1910 1951-1960

pet 1.0000 1.0000

Hitting 0.5373 1.0000 0.5952 1.0000

hr 0.2561 0.5309 1.0000 0.4901 0.3634 1.0000

sb 0.4855 0.2648 0.0020 1.0000 0.3194 0.1905 0.0476 1.0000

Field 0.4547 -0.2442  -0.2107 0.1330 1.0000 0.5135 0.2515 0.1893 0.2588 1.0000

Era —0.6032 0.1896 0.2395 -0.3027 -0.7015 -0.7616  -0.2181 -0.1744  -0.3209  -0.4423
1911-1920 1961-1970

pet 1.0000 1.0000

Hitting 0.4338 1.0000 0.4852 1.0000

hr 0.1998 0.3434  1.0000 0.3588 0.4013 1.0000

sb 0.2168 0.0649  —0.1421 1.0000 0.1278 0.0483  —0.3431 1.0000

Field 0.4971 0.1132  0.0721 —0.3570  1.0000 0.4370 0.0423 0.0862 0.0264 1.0000

Era —-0.6327 0.2427  0.1662 -0.1169  —0.4380  —0.5957 0.1664 02342 -0.2110  -0.3630
1921-1930 1971-1980

pet 1.0000 1.0000

Hitting 0.6104 1.0000 0.5266 1.0000

hr 0.3589 0.4463 1.0000 0.4428 0.4074 1.0000

sb 0.2833 0.1082  -0.2040 1.0000 0.2569 0.2056  -0.1204 1.0000

Field 0.3774 0.0855 0.0771 0.1159 1.0000 0.4532 0.1646 0.1994 0.0258 1.0000

Era —0.6385 —-0.0012 0.1628 -0.3372  -0.2744  -0.5585 0.1707 0.1235  -0.1092  —0.2941
1931-1940 1982-1991

pet 1.0000 1.0000

Hitting 0.5466 1.0000 0.4332 1.0000

hr 0.4875 0.3931  1.0000 0.2144 0.2895  1.0000

sb 0.2026 0.2699  0.0927 1.0000 0.1389 -0.1357  -0.1067  1.0000

Field 0.5797 0.1626  0.2135 —-0.0613  1.0000 0.3683 0.1873  0.1460 —-0.1414  1.0000

Era —0.6473 0.0357  -0.0179 0.0894 -0.4329  —-0.5204 0.1922  0.4155 -0.2018  —0.0618
1941-1950

pet 1.0000

Hitting 0.6274 1.0000

hr 0.3226 0.4435 1.0000

sb 0.0777 -0.0649  —-0.3225 1.0000

Field 0.4742 0.3228 0.4003 —0.2636 1.0000

Era —-0.6167 0.0091 0.2387 -0.2081  —0.1529

#Bold characters indicate correlation with winning percentage of less than 0.3, and correlation between criteria greater than 0.3.
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A last, but very important point, is that relative appropriate, and within the outranking methods,
accuracy when accurate and complete data is ELECTRE IV and PROMETHEE with criterion
available is only one factor in selecting a multiat- Type 1 have value. The outranking methods also
tribute model. Another very important aspect is have been proposed as means of incorporating
the ability to collect accurate preference and al- decision-maker personal views into the model.

ternative performance data. Sometimes, only gen-
eral qualitative data is available. (There are also

cases where precise values might be obtained, but Appendix A

they are not accurate.) In such cases, methods such

as ZAPROS (Larichev and Moshkovich, 1991) are See Tables 12 and 13.

Table 13

Regression models by decade?

Coefficients Standard t Stat P-value Coefficients Standard t Stat P-value
Error Error

1901-1905 R Square 0.8653 1951-1955 R Square 0.8661
Intercept —3.4938 0.7700 -4.5373 0.0000 —3.7090 1.6715 -2.2190 0.0296
Hitting 3.4058 0.3321 10.2562 0.0000 2.7463 0.5339 5.1436 0.0000
hr 0.0018 0.0006 3.1687 0.0022 0.0008 0.0001 5.6069 0.0000
sb 0.0003 0.0001 3.0428 0.0032 0.0001 0.0002 0.2621 0.7939
Field 3.4845 0.7655 4.5521 0.0000 3.8912 1.7267 2.2535 0.0272
Era —-0.0984 0.0112 —8.7483 0.0000 —-0.1007 0.0088 —11.4308 0.0000
1911-1915 R Square 0.8089 1961-1965 R Square 0.8553
Intercept —-3.0085 0.9894 —3.0407 0.0033 -2.5996 1.0520 -2.4711 0.0153
Hitting 3.1180 0.4028 7.7417 0.0000 3.0897 0.3090 9.9975 0.0000
hr 0.0010 0.0004 2.3790 0.0199 0.0007 0.0001 6.2184 0.0000
sb 0.0003 0.0001 2.3921 0.0193 0.0003 0.0001 2.0890 0.0395
Field 3.0988 1.0185 3.0424 0.0032 2.6844 1.0718 2.5047 0.0140
Era -0.1139 0.0121 -9.4383 0.0000 -0.1116 0.0076 —14.7599 0.0000
1921-1925 R Square 0.8081 1971-1975 R Square 0.7913
Intercept -3.2951 1.0336 -3.1879 0.0021 -3.2974 0.9924 -3.3226 0.0012
Hitting 3.0708 0.3638 8.4414 0.0000 2.5892 0.2569 10.0771 0.0000
hr 0.0005 0.0002 2.9949 0.0037 0.0008 0.0001 6.2389 0.0000
Sb 0.0001 0.0002 0.9221 0.3595 0.0003 0.0001 3.7225 0.0003
Field 3.3793 1.0517 3.2131 0.0019 3.4224 0.9999 3.4226 0.0009
Era —-0.0983 0.0103 —-9.5662 0.0000 —0.0891 0.0076 —11.6929 0.0000
1931-1935 R Square 0.8613 1982-1986 R Square 0.7815
Intercept —4.7854 1.2001 -3.9874 0.0002 -3.6375 1.0562 —3.4440 0.0008
Hitting 3.7867 0.4751 7.9697 0.0000 2.6553 0.2775 9.5684 0.0000
hr 0.0007 0.0002 4.6050 0.0000 0.0009 0.0001 9.4884 0.0000
Sb 0.0005 0.0002 2.7703 0.0071 0.0003 0.0001 4.8733 0.0000
Field 4.6357 1.2360 3.7506 0.0003 3.7769 1.0787 3.5012 0.0006
Era —-0.0832 0.0085 -9.8020 0.0000 —0.1058 0.0072 —14.7652 0.0000
1941-1945 R Square 0.8831
Intercept -1.6901 1.2335 -1.3701 0.1748
Hitting 3.9510 0.3701 10.6769 0.0000
hr 0.0007 0.0002 4.1884 0.0001
Sb 0.0004 0.0002 2.2437 0.0278
Field 1.5727 1.2474 1.2608 0.2113
Era —-0.1201 0.0088 —13.6898 0.0000

#Bold entries indicate probabilities of insignificance greater than 0.05.
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