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Abstract

Multiattribute decision making involves tradeoffs among alternative performances over multiple attributes. The
accuracy of performance measures are usually assumed to be accurate. Most multiattribute models also assume given
values for the relative importance of weights for attributes. However, there is usually some uncertainty involved in both
of these model inputs. Outranking multiattribute methods have always provided fuzzy input for performance scores.
Many analysts have also recognized that weight estimates also involve some imprecision, either through individual deci-
sion maker uncertainty, or through aggregation of diverging group member preferences. Many fuzzy multiattribute
models have been proposed, but they have focused on identifying the expected value solution (or extreme solutions).
This paper demonstrates how simulation can be used to reflect fuzzy inputs, which allows more complete probabilistic
interpretation of model results.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Multiattribute decision making has progressed in a variety of directions throughout the world. Most
models are deterministic, to include multiattribute utility theory [8] and AHP [14]. Outranking methods
from various schools [9] also support deterministic inputs, although methods such as ELECTRE [12]
and PROMETHEE [2] have always supported fuzzy input for alternative performances on attributes.
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Recognition that real life decisions involve high levels of uncertainty is reflected in the development of
fuzzy multiattribute models. Fuzzy methods have been widely published in multiattribute decision making
[1,3] to include AHP [7]. Uncertain input in the form of rough sets has also been proposed [16]. The method
of grey analysis [4] is another approach to reflecting uncertainty in the basic multiattribute model:
valuej ¼
XK

i¼1

wi � uðxijÞ; ð1Þ
where wi is the weight of attribute i, K is the number of attributes, and u(xij) is the score of alternative xj on
attribute i.

Grey system theory was developed by Deng [4], based upon the concept that information is sometimes
incomplete or unknown. The intent is the same as with factor analysis, cluster analysis, and discriminant
analysis, except that those methods often do not work well when sample size is small and sample distribu-
tion is unknown [15]. Interval numbers are standardized through norms, which allow transformation of in-
dex values through product operations.

This paper addresses the use of Monte Carlo simulation to this model to reflect uncertainty as expressed
by fuzzy input. Simulation has been applied to AHP [10], generating random pairwise comparison input
values. Our paper differs from past papers in that instead of estimating the expected value or extreme per-
formance of alternatives, simulation offers a more complete understanding of the possible outcomes of
alternatives as expressed by fuzzy numbers. The focus is on probability rather than on maximizing expected
or extreme values. Both weights and alternative performance scores are allowed to be fuzzy. Both interval
and trapezoidal fuzzy input are considered.
2. Grey related analysis

Grey related analysis is a technique that can be applied to both fuzzy and crisp data. Classical grey re-
lated analysis is based upon time series data and/or cross-sectional data [11]. This paper extends that ap-
proach to a multiattribute decision making context. We present it here as a means to obtain a solution from
fuzzy data. Suppose that a multiple attribute decision making problem with interval numbers has m feasible
plans X1, X2, . . . , Xm, with n indexes. The weight value wj of index Gj is uncertain, but wj 2 [cj, dj],
0 6 cj 6 dj 6 1, j = 1, 2, . . . , n, w1 + w2 +� � �+ wn = 1, and the index value of jth index Gj of feasible plan
Xi is an interval number ½a�ij ; aþij �, i = 1, 2, . . . , m, j = 1, 2, . . . , n. When cj = dj , j = 1, 2, . . . , n, the multiple
attribute decision making problem with interval numbers is called a multiple attribute decision making
problem with interval-valued indexes. When a�ij ¼ aþij , i = 1, 2, . . . , m, j = 1, 2, . . . , n, the multiple attribute
decision making problem with interval numbers is called a multiple attribute decision making problem with
interval-valued weights. The principle and steps of the grey related analysis method are as follows:

Step 1: Construct decision matrix A with index number of interval numbers

If the index value of jth index Gj of feasible plan Xi is an interval number ½a�ij ; aþij �, i = 1, 2, . . . , m,
j = 1, 2, . . . , n, decision matrix A with index number of interval numbers is defined as the following:
A ¼

½a�11; a
þ
11� ½a�12; a

þ
12� . . . ½a�1n; a

þ
1n�

½a�21; a
þ
21� ½a�22; a

þ
22� . . . ½a�2n; a

þ
2n�

. . . . . . . . . . . .

½a�m1; a
þ
m1� ½a�m2; a

þ
m2� . . . ½a�mn; a

þ
mn�

2
66666664

3
77777775

. ð2Þ
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Step 2: Transform ‘‘contrary index’’ into positive index

The index is called a positive index if a greater index value is better. The index is called a contrary index
if a smaller index value is better. We may transform a contrary index into a positive index if jth index Gj is a
contrary index
½b�ij ; bþij � ¼ ½�aþij ;�a�ij �; i ¼ 1; 2; . . . ;m. ð3Þ
Without loss of generality, in the following we supposed that all the indexes are ‘‘positive indexes’’.

Step 3: Standardize decision matrix A with index number of interval numbers, obtaining standardizing decision

matrix R ¼ ½r�ij ; rþij �
If we mark the column vectors of decision matrix A with interval-valued indexes withA1, A2, . . . , An, the

element of standardizing decision matrix R ¼ ½r�ij ; rþij � is defined as
½r�ij ; rþij � ¼
½a�ij ; aþij �
kAjk

; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n. ð4Þ
Step 4: Calculate interval number weighted matrix C ¼ c�ij ; c
þ
ij

h i� �
m�n

The formula for the element of interval number weighted matrix C is
C ¼ ð½c�ij ; cþij �Þm�n

½c�ij ; cþij � ¼ ½cj; dj� � ½r�ij ; rþij �; i ¼ 1; 2; . . . ;m; j ¼ 1; 2; . . . ; n. ð5Þ
Step 5: Determine reference number sequence

The element of reference number sequence is composed of the optimal weighted interval number index
value for every alternative.

U 0 ¼ ½u�0 ð1Þ; uþ0 ð1Þ�; ½u�0 ð2Þ; uþ0 ð2Þ�; . . . ; ½u�0 ðnÞ; uþ0 ðnÞ�
� �

is a reference number sequence if u�0 ðjÞ ¼
max16i6mc�ij , uþ0 ðjÞ ¼ max16i6mcþij , j = 1, 2, . . . , n.

Step 6: Calculate connections between alternatives

First, calculate the connection coefficient ni(k) between the sequence composed of weight interval num-
ber standardized index values for every alternative

Ui ¼ ½c�i1; cþi1�; ½c�i2; cþi2�; . . . ; ½c�in; cþin�
� �

and the reference number sequence

U 0 ¼ ½u�0 ð1Þ; uþ0 ð1Þ�; ½u�0 ð2Þ; uþ0 ð2Þ�; . . . ; ½u�0 ðnÞ; uþ0 ðnÞ�
� �

. The formula for ni(k) is
niðkÞ ¼
miniminkj½u�0 ðkÞ; uþ0 ðkÞ� � ½c�ik; cþik�j þ qmaximaxkj½u�0 ðkÞ; uþ0 ðkÞ� � ½c�ik; cþik�j
j½u�0 ðkÞ; uþ0 ðkÞ� � ½c�ik; cþik�j þ qmaximaxkj½u�0 ðkÞ; uþ0 ðkÞ� � ½c�ik; cþik�j

. ð6Þ
Here, q 2 (0, +1), and q is a resolving coefficient. The smaller q is, the greater its resolving power. In gen-
eral, q 2 [0, 1]. The value of q may be changed to reflect the desired degree of resolution.

After calculating ni(k), the connection between the ith plan and the reference number sequence is calcu-
lated by the following formula:
ri ¼
1

n
�
Xn

i¼1

niðkÞ; i ¼ 1; 2; . . . ;m. ð7Þ
Step 7: Determine optimal plan

The feasible plan Xt is optimal if rt ¼ max16i6mri.

3. Demonstration

To demonstrate the methods we present, we draw upon a hiring decision from Royes et al. [13]. This was a
fuzzy multicriteria decision problem. The original data was appropriate for its use, but when simulated,



Table 1
Hiring decision input data

Weights [0.1 0.3 0.3 0.4] [0.2 0.4 0.5 0.6] [0 0.1 0.2 0.4] [0.2 0.3 0.4 0.6] [0.1 0.2 0.4 0.5] [0 0.1 0.2 0.4] [0.2 0.3 0.5 0.6]
Performance C1 C2 C3 C4 C5 C6 C7

Antônio [0.6 0.7 0.8 0.9] [0.7 0.8 0.9 1] [0.2 0.3 0.4 0.5] [0.4 0.5 0.8 0.9] [0 0.1 0.3 0.6] [0.4 0.5 0.7 0.8] [0.7 0.8 1 1]
Fábio [0.2 0.3 0.4 0.5] [0 0.1 0.2 0.3] [0.6 0.7 0.8 0.9] [0.2 0.4 0.6 0.7] [0.2 0.4 0.6 0.9] [0 0.1 0.2 0.3] [0 0.1 0.3 0.6]
Alberto [0.4 0.5 0.6 0.7] [0.1 0.3 0.7 0.9] [0.6 0.7 0.8 0.9] [0.4 0.6 0.7 0.9] [0.3 0.4 0.8 1] [0.1 0.3 0.4 0.5] [0.7 0.8 1 1]
Fernando [0.8 0.9 1 1] [0.3 0.4 0.6 0.9] [0.6 0.7 0.8 0.9] [0 0.3 0.5 0.8] [0.2 0.4 0.6 0.8] [0.4 0.5 0.7 0.9] [0.3 0.4 0.6 0.8]
Isabel [0.4 0.6 0.9 1] [0.6 0.7 0.9 1] [0.4 0.5 0.6 0.7] [0.6 0.7 0.9 1] [0 0.1 0.4 0.6] [0.4 0.5 0.7 0.9] [0.4 0.6 0.8 1]
Rafaela [0.6 0.7 0.8 0.9] [0.1 0.2 0.3 0.4] [0.4 0.5 0.6 0.7] [0.1 0.4 0.6 0.9] [0 0.1 0.3 0.6] [0.4 0.5 0.7 0.9] [0 0.2 0.4 0.7]

Trapezoidal inputs given by: [minimum (value 0), left (value 1), right (value 1), maximum (value 0)].
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always yielded one alternative (Isabel) as best. We have expanded the fuzzy data, which is likely when group
members are involved in assessing both relative importance of weights, as well as alternative performance
over attributes. The problem consists of six applicants for a position, each evaluated over seven attributes.
Table 1 gives trapezoidal values for weights as well as for each alternative over each attribute. Attributes are:

C1 experience in the business area
C2 experience in the specific job function
C3 educational background
C4 leadership capacity
C5 adaptability
C6 age
C7 aptitude for teamwork

The overall value for each alternative candidate would be the sum product of weights time performance.

3.1. Interval fuzzy calculation

The grey related method uses interval input. Trapezoidal input as in Table 1 can be converted to interval
data using the a-cut technique [5,6] to build membership function the decision measures. This technique
based on the resolution principle that a fuzzy set A can be retrieved as a union of its aAa and the extension
principle that:
½f ðA1; . . . ;ArÞ�a ¼ f ðA1a; . . . ;AraÞ. ð8Þ

For any a-level, crisp values of fuzzy variables can be obtained. These crisp values are the points that a

intersect with the membership function of that variable, for instance, points A1 and A2 in Fig. 1.
Let ~a ¼ ða1; a2; a3; a4Þ be a trapezoidal fuzzy number, which can be depicted in Fig. 2.
μ

Aav

α

A1 A2
0

1

Fig. 1. Crisp values of variable.



Fig. 2. A trapezoidal fuzzy number.
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Using the a-cut technique, ~a is transformed to an interval number a.
Table
Interva

Weigh
Perfor
Antôn
Fábio
Albert
Fernan
Isabel
Rafael

Table
Weigh

Antôn
Fábio
Albert
Fernan
Isabel
Rafael
a ¼ ½a � a1 þ ð1� aÞ � a2; a � a3 þ ð1� aÞ � a4�.

In this case, using an a of 0.5, we obtain the data in Table 2.
All of these index values are positive. The next step of the grey related method is to standardize the inter-

val decision matrix. This is necessary if the data is not in a 0–1 range. However, our data is already in that
range. Next we need to calculate the interval number weighted matrix C, which consists of the minimum
weight times the minimum alternative performance score for each entry as the left element of the interval
number, and the maximum weight times the maximum alternative performance score for each entry as the
right element of that entry�s interval number. The weighted matrix C is shown in Table 3.

Data in Table 3 is rounded simply for display. The convention used in Table 3 was to round the left
interval bound down from 0.5, and the right interval up from 0.5. Subsequent calculations were based
on the unrounded data.

The next step of the grey related method is to obtain reference number sequences based on the optimal
weighted interval number value for every alternative. This is defined as the interval number for each attri-
bute defined as the maximum left interval value over all alternatives, and the maximum right interval value
2
l data

ts [0.20 0.35] [0.30 0.55] [0.05 0.30] [0.25 0.50] [0.15 0.45] [0.05 0.30] [0.25 0.55]
mance C1 C2 C3 C4 C5 C6 C7

io [0.65 0.85] [0.75 0.95] [0.25 0.45] [0.45 0.85] [0.05 0.45] [0.45 0.75] [0.75 1.00]
[0.25 0.45] [0.05 0.25] [0.65 0.85] [0.30 0.65] [0.30 0.75] [0.05 0.25] [0.05 0.45]

o [0.45 0.65] [0.20 0.80] [0.65 0.85] [0.50 0.80] [0.35 0.90] [0.20 0.45] [0.75 1.00]
do [0.85 1.00] [0.35 0.75] [0.65 0.85] [0.15 0.65] [0.30 0.70] [0.45 0.80] [0.35 0.70]

[0.50 0.95] [0.65 0.95] [0.45 0.65] [0.65 0.95] [0.05 0.50] [0.45 0.80] [0.50 0.90]
a [0.65 0.85] [0.15 0.35] [0.45 0.65] [0.25 0.75] [0.05 0.45] [0.45 0.80] [0.10 0.55]

3
ted matrix C

Performance

C1 C2 C3 C4 C5 C6 C7

io [0.13 0.30] [0.22 0.52] [0.01 0.14] [0.11 0.43] [0.01 0.20] [0.02 0.23] [0.18 0.55]
[0.05 0.16] [0.01 0.14] [0.03 0.26] [0.07 0.33] [0.04 0.34] [0.00 0.08] [0.01 0.25]

o [0.09 0.23] [0.06 0.44] [0.03 0.26] [0.12 0.40] [0.05 0.41] [0.01 0.14] [0.18 0.55]
do [0.17 0.35] [0.10 0.41] [0.03 0.26] [0.03 0.33] [0.04 0.32] [0.02 0.24] [0.09 0.39]

[0.10 0.33] [0.19 0.52] [0.02 0.20] [0.16 0.48] [0.01 0.23] [0.02 0.24] [0.12 0.50]
a [0.13 0.30] [0.04 0.19] [0.02 0.20] [0.06 0.38] [0.01 0.20] [0.02 0.24] [0.02 0.30]
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over all alternatives. For C1, this would yield the interval number [0.17, 0.35]. This reflects the maximum
weighted value obtained in the data set for attribute C1. Table 4 gives this vector, which reflects the range
of value possibilities (entries are not rounded).

Distances are defined as the maximum between each interval value and the extremes generated. Table 5
shows the calculated distances by alternative.

The maximum distance for each alternative to the ideal is identified as the largest distance calculation in
each cell of Table 5. These maxima are shown in Table 6.

The reference point is the minimum of all minima and maximum of all maxima distance for each alter-
native. A reference point is established as the maximum of entries in each column of Table 7. This point has
a minimum of 0 and a maximum of 0.3850. Thus the reference point is [0, 0.385].

Next the method calculates the maximum distance between the reference point and each of the weighted
matrix C values. The formula for this calculation is formula (6) above. Here we used a q value of 0.5. Re-
sults by alternative are given in Table 8.

The average of these weighted distances is used as the reference number to order alternatives. These aver-
ages reflect how far away each alternative is from the nadir, along with how close they are to the ideal,
much as in TOPSIS. This set of numbers indicates that Isabel is the preferred alternative, although Antônio
is extremely close, with Alberto and Fernando a little behind. This closeness demonstrates that fuzzy input
Table 4
Reference number vector

C1 C2 C3 C4 C5 C6 C7

Max(Min) 0.1700 0.2250 0.0325 0.1625 0.0525 0.0225 0.1875
Max(Max) 0.3500 0.5225 0.2550 0.4750 0.4050 0.2400 0.5500

Table 5
Extremes from alternatives to reference number vector

Distances

C1 C2 C3 C4 C5 C6 C7

Antônio (0.04, 0.0525) (0, 0) (0.02, 0.12) (0.05, 0.05) (0.045, 0.2025) (0, 0.015) (0, 0)
Fábio (0.12, 0.1925) (0.21, 0.385) (0, 0) (0.0875, 0.15) (0.0075, 0.0675) (0.02, 0.165) (0.175, 0.3025)
Alberto (0.08, 0.1225) (0.165, 0.0825) (0, 0) (0.0375, 0.075) (0, 0) (0.0125, 0.105) (0, 0)
Fernando (0, 0) (0.12, 0.11) (0, 0) (0.125, 0.15) (0.0075, 0.09) (0, 0) (0.1, 0.165)
Isabel (0.07, 0.0175) (0.03, 0) (0.01, 0.06) (0, 0) (0.045, 0.18) (0, 0) (0.0625, 0.055)
Rafaela (0.04, 0.0525) (0.18, 0.33) (0.01, 0.06) (0.1, 0.1) (0.045, 0.2025) (0, 0) (0.1625, 0.2475)

Table 6
Maximum distances

Distances

C1 C2 C3 C4 C5 C6 C7

Antônio 0.0525 0 0.12 0.05 0.2025 0.015 0
Fábio 0.1925 0.385 0 0.15 0.0675 0.165 0.3025
Alberto 0.1225 0.165 0 0.075 0 0.105 0
Fernando 0 0.12 0 0.15 0.09 0 0.165
Isabel 0.07 0.03 0.06 0 0.18 0 0.0625
Rafaela 0.0525 0.33 0.06 0.1 0.2025 0 0.2475



Table 8
Weighted distances to reference point

Distances Averages

C1 C2 C3 C4 C5 C6 C7

Antônio 0.785714 1 0.616000 0.793814 0.487342 0.927711 1 0.801512
Fábio 0.500000 0.333333 1 0.562044 0.740385 0.538462 0.388889 0.580445
Alberto 0.611111 0.538462 1 0.719626 1 0.647059 1 0.788037
Fernando 1 0.616000 1 0.562044 0.681416 1 0.538462 0.771132
Isabel 0.733333 0.865169 0.762376 1 0.516779 1 0.754902 0.804651
Rafaela 0.785714 0.368421 0.762376 0.658120 0.487342 1 0.437500 0.642782

Table 7
Extreme distances by alternative

Minimum Maximum

Antônio 0 0.2025
Fábio 0 0.3850
Alberto 0 0.1650
Fernando 0 0.1650
Isabel 0 0.1800
Rafaela 0 0.3300
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may reflect a case where there is not a clear winner. Simulation provides a tool capable of picking up the
probability of each alternative being preferred.
4. Simulation

A simulation model of this decision was generated, with both weights and alternative performance scores
over attributes treated as fuzzy numbers between 0 and 1. The simulation was controlled, using ten unique
seed values to ensure that the difference in simulation output due to random variation was the same for
each alternative.

4.1. Interval fuzzy simulation

The interval fuzzy input shown in Table 2 was modeled first. Two uniform random numbers were drawn
for each weight (one for a used to convert the original trapezoidal input), reflecting the proportional dis-
tance drawn between the minimum and the maximum. These seven weights were then totaled, and each
random weight drawn divided by the total to make the sum of the weights add to one. Uniform random
numbers were then drawn for each alternative�s performance on each attribute, again reflecting the propor-
tional score. These numbers were not added, as each had the expected random properties directly. The sim-
ulation software Crystal Ball was used to replicate each model 1000 times for each random number seed.
The software enabled counting the number of times each alternative won. Probabilities given in Table 9 are
thus simply the number of times each alternative had the highest value score divided by 1000. This was done
ten times, using different seeds. Therefore, mean probabilities and standard deviations (std) are based on
10,000 simulations. The Min and Max entries are the minimum and maximum probabilities in the ten rep-
lications shown in table.

Note that alternative Fábio is dominated by alternative Alberto, explaining why Fábio was never se-
lected. Alternative Rafaela also appears to be dominated, although this is not evident by inspection. This



Table 9
Simulated probabilities of winning for uniform fuzzy input

Interval Antônio Fábio Alberto Fernando Isabel Rafaela

seed1234 0.346 0.000 0.206 0.041 0.407 0.000
seed2345 0.375 0.000 0.182 0.035 0.408 0.000
seed3456 0.342 0.000 0.187 0.049 0.422 0.000
seed4567 0.343 0.000 0.193 0.044 0.420 0.000
seed5678 0.360 0.000 0.203 0.048 0.389 0.000
seed6789 0.393 0.000 0.181 0.044 0.382 0.000
seed7890 0.367 0.000 0.182 0.044 0.407 0.000
seed8901 0.336 0.000 0.205 0.035 0.424 0.000
seed9012 0.355 0.000 0.179 0.051 0.415 0.000
seed0123 0.367 0.000 0.171 0.049 0.413 0.000

Min 0.336 0.000 0.171 0.035 0.382 0.000
Mean 0.358 0.000 0.189 0.044 0.409 0.000
Max 0.393 0.000 0.206 0.051 0.424 0.000
Std 0.018 0.000 0.012 0.006 0.014 0.000
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demonstrates how the simulation can more accurately identify such cases. Controlled simulation can pro-
vide an empirical means of estimating dominated solutions (although admittedly without proof, nor know-
ing which other alternative or combination of alternative dominated it).
4.2. Trapezoidal fuzzy simulation

The trapezoidal fuzzy input dataset can also be simulated. X is random number (0 < rn < 1)
Definition of trapezoid:
 a1 is left 0 in Fig. 2
a2 is left 1
a3 is right 1
a4 is right 0
Contingent calculation:
 J is area of left triangle
K is area of rectangle
L is area of right triangle
Fuzzy sum = left triangle + rectangle + right triangle = 1
M is the area of the left triangle plus the rectangle (for calculation of X value), X is the random number
drawn (which is the area)

If X 6 J:
X ¼ a1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X � ða2� a1Þ � ða4� a3þ a2� a1Þ

J þ L

r
. ð9Þ
If J 6 X 6 J + K:
X ¼ a2þ X � J
K
� ða3� a2Þ. ð10Þ



Table 10
Simulated probabilities of winning for trapezoidal fuzzy input

Trapezoidal Antônio Fábio Alberto Fernando Isabel Rafaela

seed1234 0.337 0.000 0.188 0.046 0.429 0.000
seed2345 0.381 0.000 0.168 0.040 0.411 0.000
seed3456 0.346 0.000 0.184 0.041 0.429 0.000
seed4567 0.357 0.000 0.190 0.046 0.407 0.000
seed5678 0.354 0.000 0.210 0.052 0.384 0.000
seed6789 0.381 0.000 0.179 0.046 0.394 0.000
seed7890 0.343 0.000 0.199 0.052 0.406 0.000
seed8901 0.328 0.000 0.201 0.045 0.426 0.000
seed9012 0.353 0.000 0.189 0.048 0.410 0.000
seed0123 0.360 0.000 0.183 0.053 0.404 0.000

Min 0.328 0.000 0.168 0.040 0.384 0.000
Mean 0.354 0.000 0.189 0.047 0.410 0.000
Max 0.381 0.000 0.210 0.053 0.429 0.000
Std 0.017 0.000 0.012 0.004 0.015 0.000
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If J + K 6 X:
Table
Probab

Grey-R

Interva

Interva
Interva

Trapez

Trapez
Trapez
X ¼ a4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� X Þ � ða4� a3Þ � ða4� a3þ a2� a1Þ

J þ L

r
. ð11Þ
Our calculation is based upon drawing a random number reflecting the area (starting on the left (a1) as 0,
ending on the right (a4) as 1), and calculating the distance on the X-axis. The results, following the same
procedure as for interval numbers in Table 9, are given in Table 10. The differences are due to drawing two
random numbers for the interval data (one for a), while only one random number was needed per param-
eter in the interval data.
5. Analysis of results

The results for each system were very similar. Differences were tested by t-test of differences in means by
alternative. None of these difference tests were significant at the 0.95 level (two-tailed tests). This establishes
that no significant difference in interval or trapezoidal fuzzy input was detected (and any that did appear
would be a function of random numbers only, as we established an equivalent transformation). A recap of
results is given in Table 11.

Isabel still wins, but at a probability just over 0.4. Antônio was second with a probability just over
0.35, followed by Alberto at about 0.19 and Fernando at below 0.05. There was very little overlap among
11
ilities obtained

Antônio Fábio Alberto Fernando Isabel Rafaela

elated – – – – X –

l average 0.358 0 0.189 0.047 0.410 0

l minimum 0.336 0 0.168 0.040 0.384 0
l maximum 0.393 0 0.210 0.053 0.429 0

oidal average 0.354 0 0.189 0.044 0.409 0

oidal minimum 0.328 0 0.171 0.035 0.382 0
oidal maximum 0.381 0 0.206 0.051 0.424 0
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alternatives in this example. However, should such overlap exist, the simulation procedure shown would be
able to identify it. As it is, Isabel still appears a good choice, but Antônio appears a strong alternative.
6. Conclusions

Multiattribute analysis has long been recognized to involve uncertain input. While some methods have
been developed to reflect this uncertainty, for the most part, multiattribute models have been treated as
deterministic. Fuzzy multiattribute models (including grey related models) have been popular in the last
decade, probably because they reflect uncertainty in inputs, but even those models focus on the expected
most preferred choice rather than on the probabilities of alternatives being preferred.

This paper presented simulation of fuzzy multiattribute models, reflecting either interval input or com-
monly used trapezoidal input. Both weights and alternative performance scores on attributes were allowed
to be fuzzy. This is better because uncertainty is represented by a range rather than an expected point value.
Thus, simulation can be used to expand analysis to not only identify the most likely best choice, but also to
identify related probabilities, even when multiple uncertainties are present that make analytic closed for-
mula solution intractable. Simulation is a useful tool that can be applied to multiattribute models
effectively.
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