Expert Systems
with Applications

PERGAMON Expert Systems with Applications 22 (2002) 303-311
www.elsevier.com/locate/eswa
Rule induction in data mining: effect of ordinal scales
Helen M. Moshkovich?, Alexander 1. Mechitov?, David L. Olson®
*Michael E. Stephens College of Business, University of Montevallo, Montevallo, AL 35115 USA
*Department of Management, University of Nebraska, Lincoln, NE 68588-0491, USA
Abstract

Many classification tasks can be viewed as ordinal. Use of numeric information usually provides possibilities for more powerful analysis
than ordinal data. On the other hand, ordinal data allows more powerful analysis when compared to nominal data. It is therefore important not
to overlook knowledge about ordinal dependencies in data sets used in data mining. This paper investigates data mining support available
from ordinal data. The effect of considering ordinal dependencies in the data set on the overall results of constructing decision trees and
induction rules is illustrated. The degree of improved prediction of ordinal over nominal data is demonstrated. When data was very
representative and consistent, use of ordinal information reduced the number of final rules with a lower error rate. Data treatment alternatives
are presented to deal with data sets having greater imperfections. © 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Data mining may be viewed as the extraction of patterns
and models from observed data (Berry & Linoff, 1997). The
area of data mining is very broad as it incorporates techni-
ques and approaches from different research disciplines.
Data mining is usually used to answer two main types
of application questions (Edelstein, 1997): (1) generate
predictions on the basis of available data or (2) describe
behavior captured in the data. Examples of the first type
of tasks include banking (Kiesnoski, 1999), interested in
the success of prospective loans; insurance (Goveia, 1999)
interested in the probability of fraud, marketing (Peacock,
1998) interested in identifying the best prospects for direct-
mail list campaigns. Examples of the second type include
finding out which products are sold together, what infections
are connected with surgery, in what time ranges which
group of customers use a service. In this article we will
concentrate on the first type of tasks.

To answer the first type of question, three main
approaches are used (Edelstein, 1997): (1) classification,
(2) regression, and (3) time-series. These models are differ-
entiated on the basis of what we want to predict. If we want
to forecast continuous values of the output attribute, regres-
sion analysis is mostly used (time-series if we are concerned
with distinctive properties of time). If we have to predict a
categorical value for a specific data item (categorical data
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fits into a small number of discrete categories such as ‘good
credit history’ or ‘bad credit history’), we have a classifica-
tion task to solve. Examples of this type of tasks are medi-
cal or technical diagnostics, loans’ evaluation, bankruptcy
prediction, etc.

Classification is one of the most popular data mining task.
There are many different methods, which may be used to
predict the appropriate class for the objects (or situations).
Among the most popular one are: logistic regression, discri-
minant analysis, decision trees, rule induction, case-base
reasoning, neural networks, fuzzy sets, and rough sets
(Kennedy, Lee, Van Roy, Reed, & Lippman, 1997). Other
methods are used as well.

The majority of data mining techniques can deal with
different data types. The traditional types of data mentioned
in applications are continuous, discrete, and categorical.
Among these three categories continuous scales are usually
assumed to be numerical, while categorical and discrete
data involve variety. Categorical information may be
either ordinal (e.g. ‘high’, ‘medium’, ‘low’), or nominal
(e.g. ‘blue’, ‘yellow’, ‘red’). Discrete data is an uncertain
data type as different models can treat this type of data
differently. The majority of data mining models (e.g. regres-
sion analysis, neural networks, etc.) will consider discrete
data as numeric and apply models suitable for numeric data
(Lippmann, 1987). In other cases, discrete data can be
treated as categorical, viewing it as numeric codes for
nominal data as done in decision trees or rough sets
approaches (Quinlan, 1990; Slowinski, 1995). In the latter
case, it can be ordinal as well, e.g. if we describe cars, we
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can have an attribute ‘number of doors’ with possible values
of 2,4, 5, 6. It can be considered numeric (with the more
doors we have the better), or ‘4 doors’ can be the most
desirable characteristic, while others are less attractive.

Use of numeric information usually provides possibilities
for more powerful analysis than ordinal data. On the other
hand, ordinal data allows more powerful analysis when
compared to nominal data. It is therefore important not to
overlook the knowledge about ordinal dependencies in the
data sets. Although not as popular in the area of data mining,
the qualities of ordinal data were rather thoroughly exam-
ined in the area of decision analysis and expert systems
(Ben-David, 1992; Larichev & Moshkovich, 1994, 1997,
Mechitov, Moshkovich, Olson, & Killingsworth, 1995;
Mechitov, Moshkovich, Bradley, & Schellenberger, 1996;
Yager, 1981). Implementation of this knowledge may be
useful in some classification problems.

The rest of the paper will investigate additional data
mining support available from ordinal data. The effect of
inclusion of the information on ordinal dependencies in the
data set on the overall results of constructing decision trees
and induction rules will be illustrated. Possibilities for using
ordinal properties to evaluate quality of the training data set
will be discussed.

2. Classification task and data mining methodology

In many cases, previous experience in business decisions
is coded in the form of a classification. Classification
predicts a categorical value for a specific data item and
uses a small number of discrete categories (e.g. ‘good credit
history’, ‘bad credit history’, etc.). Classification is one of
the most popular knowledge discovery tasks applied to a
variety of fields. Methods from different research areas are
devoted to the analysis of such a problem.

Logistic regression is a traditional approach to a classifi-
cation problem with numeric scales. It has the same assump-
tions as regression analysis, but allows use of discrete values
for classes. Berry and Linoff (1997) comment that for data
sets consisting entirely of continuous variables, regression is
probably a very good method. Regression analysis identifies
an additive function which links case values with the
outcome class with the least error. Regression models can
be designed to reflect non-linearities, such as the inter-
actions across the variables describing cases or objects.
Once the model is obtained it can be used to find corre-
sponding class for new objects.

Artificial neural networks act much the same way, except
that they try many different coefficient values in the additive
functions to fit the training set of data until they obtain a fit
as good as the modeler specifies. Artificial neural network
models have the added benefit of considering variable inter-
actions, giving it the ability to estimate training data con-
tingent upon other independent variable values. (This could
also be done with regression, but would require a tremen-

dous amount of computational effort.) Artificial neural
network models are based on automatic fitting of a model
including non-linear combinations of variables. These
models are self-adjusting, in that they train on a given set
of input data. During the training stage, if the current model
correctly predicts the next observation of data, it continues
on to the next observation. However, if the current model is
incorrect, the model adjusts to more accurately predict the
current observation. This may lose the accuracy developed
for past learning, so the system iterates through the data
until an acceptable level of accuracy is obtained.

Neural networks have been applied to almost all types of
data mining applications. They have the feature that the
model remains hidden to the analyst, so that while the
computer can quickly give its prediction for a variable,
the analyst cannot take the model apart to understand
why. Therefore, if explanation of results is very important,
usually other methods, especially rule induction systems,
are used instead of neural networks.

While logistic regression, discriminant analysis, and
neural networks are best to use in cases when all attributes
are presented with continuous scales, decision trees usually
can deal with continuous and categorical data simul-
taneously (Quinlan, 1990). Decision trees are useful because
they allow the decision process to be unveiled from the data
(Linoff, 1998). Each branch in the tree represents a decision
made on a particular attribute. The algorithm automatically
determines which attributes are most important. The method
has relative advantage over neural network and genetic
algorithms in that a reusable set of rules are provided,
thus explaining model conclusions (Michie, 1998). There
are quite a number of systems for tree construction. Almost
all data mining systems include tools for this type of data
analysis. One of the most popular decision tree systems is
C4.5 (Quinlan, 1993). It was used in a very large number of
applications as well as the basis for comparison of new
machine learning algorithms. The system also generates
rules, which can be applied in production rule expert
systems.

Fuzzy and rough sets approaches try to take into account
the uncertainty of data. The assumption in traditional deci-
sion trees and rule induction systems is that the distinctions
between classes and attribute levels are clear and crisp (e.g.
in that somebody is either old, middle-aged, or young, with
distinct and well-defined limits). However, someone aged
34 is not all that young, nor is someone aged 36 all that
much older than someone 34. Fuzzy logic (Zadeh, 1965)
considers degrees of membership in categories. Someone
who is 36, for instance, might have a membership function
of 0 for the category old, a 0.9 membership function for the
category middle-aged, and a 0.3 membership function for
the category young. A membership function provides a rela-
tive rating between 0 and 1 of membership in a set. As a
result, fuzzy analysis provides for each instance a distribu-
tion of membership functions for all classes (or can choose a
class with the highest membership as the outcome class).
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This approach is considered to be good when we do not
know the exact information about the data itself but have
experts who are able to give stable numeric estimates for the
membership functions.

Yager (1981) introduced a fuzzy set decision model in
which the membership function is evaluated using an ordi-
nal scale with seven gradations. Close to this approach is the
theory of rough sets (Pawlak, 1991; Slowinski, 1995). In
addition to precise rules (stating a single class for the data
item) as done in rule-based systems, the rough sets approach
introduces approximate rules (which can include several
classes for the same data item). In this sense, rough sets
can be viewed to some extent as fuzzy sets with a three-
valued membership function (belongs to this class, does not
belong to this class, may belong to this class). Hong, Wang,
Wang, and Chien (2000) and Yahia, Mahmod, Sulaiman,
and Ahmad (2000) present combinations of these approaches.

Rather a large number of classification tasks in business
applications may be viewed as tasks with classes reflecting
the levels of the same property. Evaluating creditworthiness
of clients is rather often measured on an ordinal level as, e.g.
‘excellent’, ‘good’, ‘acceptable’, or ‘poor’ (Ben David,
Sterling, & Pao, 1989). Articles submitted to the journals
in the majority of cases are divided into four groups:
‘accepted’, ‘accepted with minor revisions’, ‘may be
accepted after revision and additional review’, ‘rejected’
(Larichev & Moshkovich, 1997). Applicants for a job are
divided into accepted and rejected, but sometimes there may
also be a pool of applicants left for further analysis as they
can be accepted in some circumstances (Ben-David, 1992;
Slowinski, 1995). Bankruptcy prediction may be made with
some numeric measure, or use of ordered symbolic values
(Messier & Hansen, 1988). In car selection, cars may be
divided into groups ‘very good’, ‘good’, ‘acceptable’,
‘unacceptable’ (Bohanec & Rajkovic, 1990). In all these
examples, the peculiarity of the tasks is that data items
with ‘better’ qualities (characteristics) logically are to be
presented in better classes: the better the article in its char-
acteristics the more close it is to the class accepted. Thus, if
attributes characterizing data items are rank ordered from
the highest to the lowest level (as the classes themselves),
there is a dependency between the attributes’ level the data
item has and the class appropriate for it. This information (if
taken into account) can be useful in data mining. In our
opinion this information can: (1) lead to a smaller number
of rules with the same accuracy; (2) enable the system to
extend obtained rules to instances not presented in the train-
ing data set; (3) enlarge the supporting number of cases for
the rule. In spite of this fact not many data mining tech-
niques take into account this type of information. As we
showed earlier, the majority of data mining approaches to
classification work with numerical information. One of the
few approaches that can deal with both numerical and cate-
gorical information is a decision tree and some induction
algorithms (e.g. rough sets). But the majority of them do not
differentiate categorical and ordinal information.

C4.5 is a popular software package for this type of task
(Quinlan, 1993). It produces a decision tree and rules for
almost any type of input (label, discrete, continuous) and
has proven to be effective in many tasks. Still, it does not
incorporate knowledge about ordinal dependencies in the
data sets. The latest version of this software (C5 for Unix
and See5 for Windows platform) includes some improve-
ments into the system. One improvement is the possibility to
mark some scales for attributes as ‘ordered’ (http://www.
rulequest.com). This feature is mentioned in passing with no
explanations of how it is used in the model, or any examples
provided for its illustration. Therefore, we decided to
analyze several tasks using this feature and to evaluate the
result. We used several databases from the machine learning
repository  (http://www.ics.uci.edu/~mlearn/MLSummary.
html) for this purpose.

3. Experimental results with categorical and discrete
scales

We have selected several databases from the repository
with the following characteristics: (1) a small number of
ordered classes and (2) a majority of categorical attributes
in the description of instances. The first database selected
was car evaluation database (donated by Bohanec and
Raikovic, 1990). This database represents a pure case of
ordinal classification. It contains 1728 instances character-
izing cars on the basis of six attributes. Four classes are
used: unacceptable, acceptable, good, very good (it can be
easily seen that those are the quality levels for the same
overall acceptability of the car for a customer). Six attri-
butes with categorical scales were presented as follows:

buying price (vhigh, high, medium, low);

price of maintenance (vhigh, high, medium, low);
number of doors (2, 3, 4, 5 or more);

capacity in terms of persons to carry (2, 4, more);
trunk size (small, medium, big);

safety (low, medium, high).

All these attributes have a monotone dependency with the
corresponding class: very high price is worse than high with
all other characteristics at the same level, low safety if worse
than medium or high (especially with all other characteris-
tics at the same level), and so on.

First, the traditional decision tree analysis was carried out
for all 1728 cases. In this case all scales were marked as
discrete (or categorical). The resulting tree contained 131
nodes and produces 3.7% errors. The corresponding set of
induction rules consisted of 74 rules and produced 4.1%
errors.

After that we marked all these attributes as ordered (using
new feature of See5). The resulting tree produced 59 nodes
and 0.6% errors. A corresponding set of induction rules
contained 51 rules with .2% errors. Thus, even with very
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Table 1
Data for car evaluation data set

Results for nominal scales: 1728 cases

Results for ordinal scales: 1728 cases

Decision tree Rules Decision tree Rules

Size Errors No. Errors Size Errors No. Errors

131 64 (3.7%) 74 71 (4.1%) 59 10 (0.6%) 51 4 (0.2%)

(a) (b) (©) (d) Class (a) (b) () (d) Class

1186 21 3 (a): Unacc 1210 (a): Unacc

19 361 2 2 (b): Acc 382 2 (b): Acc
11 55 3 (c): Good 1 68 (c): Good
6 4 55 (d): Vgood 1 64 (d): Vgood

good stable data (representative data set with few inconsis-
tencies) the introduction of the ordinal dependencies into
the model has considerably improved the result (Table 1).
A smaller number of induced rules with lower level of errors
are usually a goal in decision tree analysis that is hard to
achieve.

Analogous experiments were carried out with several
other databases. The next database used was the database
for teaching assistant evaluation (TAE) (Loh & Shih, 1997).
The data consist of evaluations of teaching performance
over three regular semesters and two summer semesters of
151 teaching assistant (TA) assignments. Three overall
classes were used in the problem. Categories low, medium,
and high evaluated overall quality of the teaching. Five
attributes were used to describe instances: course instruc-
tor (categorical, 25), course (categorical, 26), class size
(numerical, continuous), plus two attributes considered
binary by the authors. The first one was ‘English language
being native to the TA’ (1—English speaker, 2—non-
English speaker). We considered that usually, a native
English speaker has better opportunities for better teaching
than the non-native one. The second binary attribute marked
the course taught in a regular or summer semester (1—
summer semester, 2—regular semester). We considered
the regular semester to be better for better teaching than
the summer semester. Thus, we marked the last two attri-
butes as ordered. This database was rather poor for rule
induction (too many instructors and courses with a small
number of repeating values in 151 cases). The initial variant
produced a decision tree with 9 nodes but 43.7% of errors in
classification, or 8 induction rules with the same level of
errors. The variant analysis with partially ordered informa-
tion (two attributes) produced a decision tree with 34 nodes
but only 11.9% of misclassifications and the corresponding
rule base contained 25 rules with the same level of errors.
Even in this case, the simple introduction of ordinal depen-
dencies produced essential improvement to the classification.

The third database selected for this study represents data
for differentiating DNA sequences (Noordewier, Towell, &
Shavlik, 1991). The problem posed in this dataset is to
recognize, given a sequence of DNA presented by 60 letters,
the boundaries between exons (parts of the DNA sequence

retained after splicing) and introns (parts of the DNA
sequence that are spliced out). Three classes are presented
in data: n (no boundary), ei (exons to introns boundary), and
ie (introns to exons boundary). Each of 60 attributes is
presented by one of the letters: A, T, G, C plus letters N,
D, S, R to introduce some of the combinations of the
previous letters (e.g. D is A or G or T). The overall database
contains 3190 instances. The percentages of letters N, D, S,
and R are very small (less than 0.002%).

In the initial data set all attributes are presented as cate-
gorical. The data set of 3190 cases produces very good
results with the C4.5 algorithms. It is included with the
See5 system under the name ‘Genetics’ as a sample case
for pure categorical data. The resulting decision tree has 169
nodes with 3.7% of errors. The rule set has 84 rules with the
same level of errors. The idea to apply ordered scales for
this problem arose from the observation that the letters in
the scales were not in an alphabetic order. That implied
special meaning in their order for the researchers. Our
trial showed that by marking all scales as ordinal it was
possible to improve the results for this problem as well.
The initial set of 3190 cases produced 111 nodes (instead
of 169 with categorical scales) with a 1.8% error rate, while
the rule set contained 79 rules and had 2.2% error rate.

Ordinal classification tasks are wide spread in business
applications. In the majority of business applications the
decision classes represent the levels of quality on the overall
instance estimation. Loan applications’ evaluation is one of
these numerous examples and a very popular task in data
mining. We used the ‘German credit data set’ from the
machine learning repository. The data set is provided by
Dr Hans Hofmann from the Insitut fur Statistik und Ekoni-
metric Universitut at Hamburg. It contains 1000 instances of
loan applications with evaluation as ‘good for loan’ (class 1)
and ‘bad for loan’ (class 2). The attractive feature of this
data set is that all the 20 attributes used are described in the
documentation (while many other data sets on loan applica-
tions are coded with no meaningful data of the attributes
used).

The data set is presented by 20 attributes with 7 of them
being numerical or continuous, and 13 marked as categori-
cal. This data set seemed as a very interesting variant for
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trying out ordered scales for some (or all) of categorical
attributes. The attributes used were as follows:

1. Status of existing checking account (categorical): A11-
Al4.

. Duration of the loan in months (numerical).

. Credit history (categorical): A30—-A34.

. Purpose of the loan (categorical): A40—A410.

. Credit amount (numerical).

. Savings account/bonds (categorical): A61-A65.

. Present employment (categorical): A71-A75.

. Installment rate in percentage of disposable income
(numerical).
9. Personal status and sex (categorical): A91—-A95.

10. Others debtors/guarantors (categorical): A101-A103.

11. Present residence since (numerical).

12. Property (categorical): A121-A124.

13. Age in years (numerical).

14. Other installment plans (categorical): A141-A143.

15. Housing (categorical): A151-A153.

16. Number of existing credits at this bank (numerical).

17. Job (categorical): A171-A174.

18. Number of people being liable to provide maintenance

for (numerical).
19. Telephone (categorical): A191-A192.
20. Foreign worker (categorical): A201-A202.

0NN L kAW

Categorical data are presented with description of each
scale values, e.g. All is ‘the existing checking account is
less than 0 DM’, A12 is ‘the existing checking account is
less than 200 DM’, and so on. The presence of these defini-
tions allowed us to analyze how the scale values are
connected to the two resulting classes (good or bad for
loan). Only two of the scales for categorical data were not
clearly ordinal (Attribute 4: purpose of the loan and Attri-
bute 9: personal status and sex). There is a possibility that
the data were ordinal for the bank but we had no knowledge
to state this. With other parameters it was much easier (e.g.
better credit history is better for a good loan). Thus, all other
attributes were marked as ordered for our analysis. The
initial data (with categorical and numerical data only)
provided a decision tree with 89 nodes and 14.3% error
rate or 29 rules with 17.0% error rate. The same data for
which ordered scales were marked produced a larger set of
decision tree nodes and number of rules (109 and 35 corre-
spondingly) but lowered the error rate to 10.3% for decision
tree and 11.4% for rules.

Usually in loan application analyses, the errors in assign-
ing ‘good application’ to an actual bad category is con-
sidered to be much more significant than the reverse (as it
usually leads to direct losses while the reverse is more a lost
opportunity with much less profit impact). To take this into
account we carried out the same analysis with costs for the
errors as was suggested in the initial data set: the error of
assigning the class ‘good application’ to a bad application is
five times more expensive than the reverse. Using costs in

decision tree construction led to a 25.8% error rate at 0.26
cost while usage of rules lead to a 31.2% error rate at cost
0.56. Using ordinal scales the results were a 16% error rate
for the decision tree with cost 0.17 and a 30% error rate for
rules at cost of 0.34. Here the advantage of using ordinal
scales is even more evident. We are sure that the result could
be improved in the number of rules as well if we were able
to have an expert consultation about the order for some of
the longer scales used in the task.

To make sure that ordinal properties give advantage not
only in deriving decision rules but also in implementing
them to the testing data sets, all these data sets (except
TAE due to its low quality) were used to construct decision
rules on the basis of the 60% sample from the initial data set
(the training data set). The other 40% of instances were used
as a test data set to evaluate the quality of the rules. The
summarized data on number of nodes, and error rates are
presented in Table 2.

These results support the notion that the presence of ordi-
nal dependencies in the data set should be accounted for as
they may provide better results within the same task envir-
onment. At the same time, how ordinal information is
accounted for in the traditional decision tree model is rather
simple. This information is used while making splitting
decisions. If scales are ordinal (e.g. high, medium, and
low), we can look for a split not only among high, medium,
and low, but also, high—medium and medium—low (and we
do not need to analyze the combination high—low). This is a
simple and useful technique that can provide effective
results as we have shown earlier. But information about
the ordinal nature of the problem can lead to a much more
rich set of conclusions than this. In Section 4 we will look
more closely at the possibilities of implementation of ordi-
nal dependencies in ordinal classification tasks.

4. Ordinal information in a classification task

Tasks where data items are distributed among classes
which reflect the levels of the same property are popular
in the business world. In the car evaluation case, cars are
divided into groups very good, good, acceptable, unaccep-
table. In all examples presented in Section 3, the peculiarity
of the tasks is that data items with better characteristics are
to be present in better classes. Thus, if attributes character-
izing data items are rank ordered from the highest to the
lowest level (as the classes themselves), there is a depen-
dency between the attributes’ level the data item has and a
class it belongs to. The results of this quality to some extent
were demonstrated in the previous examples.

Let us consider a less complicated case of loan evaluation
based on three attributes:

1. age with possible values of young, middle, and old;
2. income with possible values of high, average, and low
and
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Table 2
Using ordinal scales instead of categorical in some data sets

Databases
Number of Cars TAE Genetics Loan Loan with costs
Classes 4 3 3 2 2
Attributes 6 5 60 20 20
All cases (categorical/ordinal)
Cases 1728 151 3190 1000 1000 Cost
Nodes 131/59 9/34 169/111 89/109 88/130 0.26/0.17
Errors (%) 3.7/0.6 43.7/11.9 3.7/1.8 14.3/10.3 25.8/16.0
Rules 74/51 8/25 84/79 29/35 30/63 0.56/0.34
Errors (%) 4.1/0.2 43.7/11.9 3.7/2.2 17.0/11.4 31.2/30.0
60% of cases (categorical/ordinal)
Cases 1037 1914 600 600 Cost
Nodes 78/41 134/59 49/64 82/61 0.21/0.20
Errors (%) 5.8/1.5 3.5/3.4 14.8/10.3 21.3/19.3
Rules 54/32 61/40 22/27 43/36 0.42/0.34
Errors (%) 4.7/1.1 1.7/1.7 16.3/11.2 28.8/25.2
Test cases (categorical/ordinal/cost)
Tree-errors (%) 12.0/5.2 8.0/6.8 28.5/29.5 43.8/32.3 0.83/0.66
Rules-errors (%) 9.4/5.2 6.9/6.0 28.5/30.8 41.3/32.3 0.70/0.57

3. risk for the loan to be paid on-time with possible values
of high, medium, and low.

The data comes from a hypothetical example presented in
Olson and Courtney (1998).

650 instances of loan applications evaluated against these
attributes were presented in the data set with 585 cases
being ‘loans paid on-time’ and 65 cases ‘loans paid late or
default’. These data were supposed to be used to formulate
several simple rules for loan officers in their everyday prac-
tice. Application of a standard version of the decision tree
and rule induction algorithm produced one simple rule:
consider all applications as good (yielding a 10% error
rate as we have only 65 ‘bad credit’ cases among 650).

Lets look at this problem as an ordinal classification task.
Attribute scales were considered to be ordinal by loan
officers with the following sequences:

1. for risk: low risk was considered to be better than
medium (for the loan to be paid on-time), and medium
better than high;

2. for income: high income was considered to be better for
‘good loan’ than average than low;

3. for age: old age was considered to be better for good loan
than middle than young.

The ordinal classification task assumes that ‘cases with
better characteristics should be placed in a better class’. In
this example it tells us that for example, a middle-aged
applicant with low risk and high income has a better chance
to pay the loan on-time than a young applicant with low risk
and high income.

Formally the ordinal classification problem can be
presented as follows. Let U (universe) present all possible

objects in the task. X C U is any subset of these objects
(data items in a data set). Objects from X are distributed
among k classes: Cy,C,,..., Cy, indicating the degree in
which object satisfies the overall output quality (from the
lowest to the highest). This means that if x,y € X, and
C(x) > C(y), object x has higher overall output quality
than object y. Each object is described by a set of attributes
A ={A,A;,...,A,}. Each attribute A; has an ordinal scale S;
(possible values are rank ordered from the lowest to the
highest in quality against this attribute). A;(x) € S;, A;(y) €
S;, and A;(x) > A;(y) means object x has higher quality on
attribute A; than object y.

This presentation of the ordinal classification task allows
use of this knowledge to make some additional conclusions
about the quality of the training set of objects in X. Ordinal
classification allows to introduce the notion of the consis-
tency of the training set as well as completeness of the
training set. These two notions are described in Sections
4.1 and 4.2.

4.1. Consistency of the training set

Quinlan (1990) remarked that if attributes describing
objects in a classification are adequate it is always possible
to construct a tree ideally distributing objects among
classes. Attributes are considered to be adequate if there
are no two objects in the training set that have the same
value for every attribute but belong to different classes. In
the case of the ordinal classification task this quality of
consistency in classification (the same quality objects have
to belong to the same class) can be essentially extended.
With categorical data, only objects with the same set of
attribute values have to be in the same class (to have a
consistent classification). In ordinal classification all objects
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with higher quality among attributes have to belong to a
class at least as good as objects with lower quality. This
condition can be easily expressed as follows: if A;(x) =
A;(y) foreach i = 1,2,...,p, then C(x) = C(y).

Let us return to our loan example. Let us assume that the
data showed a middle-aged applicant with average income
and medium risk usually pays a loan on-time. This means
that all applicants who are old or middle-aged with high or
average income and low or medium risk usually pay their
loan on-time. Thus one special case allows us to formulate a
rule that includes seven additional combinations of possible
values against these three attributes:

(old, high income, low risk);

(old, high income, medium risk);

(old, average income, low risk);

(old, average income, medium risk);
(middle age, high income, low risk);
(middle age, high income, medium risk);
(middle age, average income, low risk).

All these cases have at least one attribute value that is of
better quality for paying the loan on-time than the initial
case (middle age, medium income, medium risk). Using this
quality we can evaluate the consistency of the training set as
for each case we can calculate the number of cases contra-
dicting it, using not only cases with the same set of attribute
values (which may be rather few) but also all dominating (or
dominated) ones. In our loan example we will have to take
into account all cases representing the above seven combin-
ations (plus the initial case) and mark number of times they
were assigned to different classes.

If the data set is highly inconsistent it is not reasonable to
expect any logical result from any type of the mining tool. If
inconsistency is slight, almost any mining tool will be able
to deal with it reasonably.

Let us assume that there is a small number of objects in
the data set whose classification contradicts a large number
of other objects’ classes. If we are interested in a consistent
set of logical rules, there can be several venues to follow.
These objects may be eliminated from the data set (like
outliers in a statistical analysis). They can be reclassified
(put into a different class more in accordance with the
ordinal dependences of the task). There are approaches
which helps in finding the minimal number of such changes
that results in a consistent data set (Larichev & Moshkovich,
1994). Sometimes the situation can be discussed with an
expert in the field (concerning contradictory objects and/or
ordinal statements).

The analysis of 650 cases for loan applications in our
example (585 of whom paid on-time) showed lot of cases
contradicting each other directly (the same instances with
different final classes) and indirectly (through ordinal
dependencies). For example, there were 192 instances
with characteristics (young, average income, high risk)
belonging to class ‘loan paid on-time’. They contradicted

10 cases being in the class ‘loan not paid on-time’ and some
other cases with better characteristics in the class ‘loan not
paid on-time’. This is rather a usual problem with loan
evaluation data as the vast majority of loans would usually
be paid back (making the first class dominate the data). At
the same time, loan officers are interested in a rather conser-
vative set of rules as cost of an error of putting a ‘bad loan’
into a better class is much more than the reverse. Usually
this problem is dealt with by introducing costs for mistakes.
In this case the costs were proposed as 1000 and 100 for
more and less important error correspondingly. Using See5
with the costs produced a rule: every loan is to be considered
‘not on-time’ with 585 errors of classification (90% error at
cost 90) which was also not satisfying as the rule to approve
all loans with a 10% error rate for the task without costs.

Analysis of the ordinal structure of the cases showed that
case with characteristics (young, income low, risk high) was
presented in the class ‘loan paid on-time’. This case was
repeated 50 times in the data set with this class and five
times in the second (‘loan not paid on-time’). This is the
worst possible combination of attribute values. If it consti-
tutes a ‘good loan’ all loans are good and the result of data
mining assigning all cases to this class is not surprising. This
data set cannot produce any other reasonable result on this
basis.

In some circumstances a highly inconsistent data set may
indicate that the data are not discriminating between classes
in this presentation. It may be necessary to recode data or
use other attributes as well. In the case of ordinal dependen-
cies between attribute scales and classes, we can rather
easily obtain a very substantial amount of information
about the consistency of the training set even if we do not
have the objects with the same attribute values in it. As this
requirement is based on the characteristics of the task logi-
cal analysis, the cause of the inconsistencies can be carried
out and informed decisions may be made. If the position of
the investigator is that we must not change anything in the
initial data, a possible outcome is to allow more than one
class for some of the objects, like a higher border for the
class in rough sets (Slowinski, 1995).

4.2. Completeness of the initial data set

In general, if the size of the task is not very large we can
evaluate the representativeness of the training set (dis-
criminating power of the knowledge in it). We can form
all possible objects in U (we can do that as we have a finite
number of attributes with a small finite number of values in
their scales) and check how many of them are presented in
the training data set. It is evident that the smaller this
proportion the less discriminating power we will have for
the new cases.

Let us return to our example of 650 cases of loans with
three characteristics: age, income, and risk. There are only
27 possible combinations of attribute values (three attributes
with three possible values each). Although we had 650



310 H. M. Moshkovich et al. / Expert Systems with Applications 22 (2002) 303-311

cases, only 16 out these 27 combinations, were presented
among them. This shows that 11 combinations may be very
rare in real life cases, but it also gives us the idea that the
predictive power of the induced rules will be lower due to
these missing combinations.

Taking into account ordinal dependences between attri-
butes and classes may allow us to make some valid conclu-
sions even about some of the ‘missing’ attribute values
combinations. For example, in our loan evaluation example,
the combination (old, high income, medium risk) is not
present in the data set, but as it was stated in Section 4.1,
if the combination (middle age, average income, medium
risk) is attributed to the class ‘loan paid on-time’, then the
combination (old, high income, medium risk) can also be
assigned to this class as it has two attribute values (age and
income) more preferable than the initial one.

Ordinal classification allows a different view of the
construction of decision rules from the training data set.

Let X; C X be a subset of objects from X belonging to
class C;. Two subsets can be differentiated among these
objects. One subset will be called the lower border (LB))
of the class and will consist of objects with the lowest
possible attribute values in this class. The second subset
will be called the upper border (UB)) of the class and will
consist of objects with the highest possible attribute values
in this class.

These two borders accurately represent the jth class (as it
was presented in the training set). We can classify any other
object from X; as belonging to this class just because its
attribute values are between the values of objects from
LB; and UB;. Let us look at object x € X; which is not in
the upper or lower border of the class. As it is not in UB; it
means that there is an object y € UB; for which A;(y) =
A;(x),i=1,2,...,p. This leads to C(y) = C(x). Analogously
there is object z € LB; for which A;(x) = A(z), i=
1,2,...,p. Thus C(x) = C(z). But C(y) = C(z) = C;. Thus,
Clx) = C;.

Let us say that in our example of loan evaluation the
elements of the upper and lower borders of class 1 (‘loan
paid on-time’) and class O (‘loan not paid on-time’) are as
follows:

UB4: (old, high income, low risk). This represents the best
combination of attribute values in this task.

LB,: (middle age, average income, medium risk), (young,
average income, low risk).

UBy: (old, high income, high risk), (young, high income,
medium risk).

LBy: (young, low income, high risk). This represents the
least attractive combination of attribute values.

Constructed borders allow us to classify some objects
with attribute values not presented in the training data set.
Any object from U whose attribute values are between those
presented in upper and lower border of the class may be
classified as belonging to this class. For example, let us

say we have a new loan application with a combination of
characteristics as follows: (young, low income, medium
risk). This combination was not presented in the training
set. We can easily see that this loan application has less
attractive attribute value in income than the second element
on UBy,. Thus, it belongs to the class ‘loan not paid on-time’.

In cases with more than two classes even if information is
not enough to find the class, borders can still reduce the
number of possible classes for the object, e.g. if the object
has less attractive attributes than even one of the elements of
the lower border of the class, this object must not belong to
this class.

Borders summarize the knowledge presented in the train-
ing data set. The same object can be presented in upper as
well as in the lower border of the class if its attribute values
are incomparable with any of the other objects in the class (it
has some values higher and some lower when compared to
any other object in the class). If there are inconsistencies in
the training data set (see Section 4.1), the same object may
be within borders of more than one class (inconsistencies
are not resolved by using borders).

The notion of borders is useful. On one hand, in some
cases the subset of objects from each class can be analyzed
for rules (instead of the whole data set) if the model rakes
into account ordinal scales. On the other hand, these borders
present rules for classification by themselves, as any object
(not from the training data set) whose attribute values are
between lower and upper borders of the class will be classi-
fied as belonging to this class.

Using our ordinal model for the car evaluation example
we found the following. First, the data set was representative
enough to classify all possible combinations of attributes,
but five cases (assigned to two possible classes out of four).
We were able to form borders for each class and resolve
inconsistencies by reclassifying 18 cases.

5. Discussion and conclusion

Knowledge discovery is a complicated process of extract-
ing useful information from data. It includes many steps
such as data warehousing; target data selection; data clean-
ing, preprocessing, and transformation; model development
and choosing suitable data mining algorithms; evaluation
and interpretation of results; using and maintaining the
discovered knowledge.

In a majority of the real cases, the knowledge discovery
process is iterative and interactive in nature. Results
obtained at any step of the process may stimulate changes
at earlier steps. At the core of the knowledge discovery
process are the data mining methods for extracting patterns
from data. These methods can have different goals and may
be applied successively to achieve the desired result in the
knowledge discovery process (any method that can help in
obtaining more information from data is useful). Although
the ultimate goal of knowledge discovery is an automated
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knowledge discovery, the majority of available tools today
are designed for expert analysts. They work with initial data
providing the right data for the right analysis. They analyze
interim results at each step of the process and re-adjust data,
models, and techniques as necessary.

The understanding that some attributes possess ordinal
qualities regarding categorical classes may significantly
improve the results of the analysis in classification tasks.
The data presented in Section 4 shows that just stating
these ordinal dependencies in the traditionally used analy-
tical tools may lead to a better predictive model. It usually
leads to a reduced number of rules and nodes with simul-
taneous reduction in error rate.

The car evaluation data set proved to be highly represen-
tative and consistent. The primary gain of using ordinal
information in this case was in reducing the number of
final rules with a lower error rate. In other tasks with less
adequate information ordinal analysis may show the
chances for the stable and reliable outcome as was illu-
strated in the loan application example. This data repre-
sented an example of a very inconsistent and incomplete
set of data even though the dimensionality of the problem
was relatively small. It is important to evaluate this factor
before applying a data mining technique as it may require
some action, as long as the representativeness of the data is
not distorted. Inconsistent data sets can be improved by
eliminating instances involving too many contradictions,
or by reclassifying some of them, or by reevaluating the
description of cases (criteria and scales used in the task).
In any case, the information on the quality of the data set
makes it possible to understand why this data set is not good
enough for the task being considered. The substantial addi-
tional information that can be obtained due to ordinal depen-
dences between attribute scales and decision classes is
valuable.

Although algorithms for ordinal classification are labor
intensive (not meant for very large data sets), they can be
used at some stages of data analysis; for example, after
reducing the number of attributes with other methods
(Saarenvirta, 1999), or after feature construction (Major,
1998). Incorporation of ordinal classification into the data
mining classification technique can improve overall results
for specific tasks.
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